ELFK日志采 - QuickStart

news2025/1/16 20:02:42

文章目录

    • 架构选型
      • ELK
      • EFLK
    • Elasticsearch
      • ES集群搭建
      • 常用命令
    • Filebeat
      • 功能介绍
      • 安装步骤
      • Filebeat配置详解
      • filebeat常用命令
    • Logstash
      • 功能介绍
      • 安装步骤
      • Input插件
      • Filter插件
        • Grok Filter 插件
        • Mutate Filter 插件
          • 常见的插件配置选项:
          • Mutate Filter配置案例:
      • Output插件
    • Kibana
      • 功能介绍
      • 安装步骤

架构选型

ELK

“ELK” 是三个开源项目的首字母缩写,这三个项目分别是:Elasticsearch、Logstash 和 Kibana。

  • Elasticsearch 是一个搜索和分析引擎。
  • Logstash 是服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到Elasticsearch、kafka等。
  • Kibana 则可以让用户在 Elasticsearch 中使用图形和图表对数据进行可视化。

一套日志采集系统需要具备以下5个功能:

  • 收集 :能够采集多个来源的日志数据。
  • 传输 :能够稳定的把日志数据传输到日志服务。
  • 存储 :能够存储海量的日志数据。
  • 查询 :能够灵活且高效的查询日志数据,并提供一定的分析能力。
  • 告警 :能够提供提供告警功能,通知开发和运维等等

Elastic官网:https://www.elastic.co/cn/what-is/elk-stack

EFLK

在采集日志数据时,我们需要在服务器上安装一个 Logstash。不过 Logstash 是基于 JVM 的重量级的采集器,对系统的 CPU、内存、IO 等等资源占用非常高,这样可能影响服务器上的其它服务的运行。所以,Elastic NV 推出 Beats ,基于 Go 的轻量级采集器,对系统的 CPU、内存、IO 等等资源的占用基本可以忽略不计。因此,本文的示例就变成了 ELFK 。其中,Beats 负责采集数据,并通过网路传输给 Logstash。即整体架构:

Beats 是一个全品类采集器的系列,包含多个:(使用 Filebeat,采集日志文件)

  • Filebeat :轻量型日志采集器。√
  • Metricbeat :轻量型指标采集器。
  • Packetbeat :轻量型网络数据采集器。
  • Winlogbeat :轻量型 Windows 事件日志采集器。
  • Auditbeat :轻量型审计日志采集器。
  • Heartbeat :面向运行状态监测的轻量型采集器。
  • Functionbeat :面向云端数据的无服务器采集器。

Elasticsearch

ES集群搭建

参考:Elasticsearch7.x - 集群部署 - lihewei - 博客园 (cnblogs.com)

常用命令

启动 Elasticsearch 服务

# 使用命令行启动 Elasticsearch 服务
elasticsearch

# 或者使用 systemd(根据您的操作系统)
sudo systemctl start elasticsearch

停止 Elasticsearch 服务

# 使用命令行停止 Elasticsearch 服务
Ctrl+C

# 或者使用 systemd(根据您的操作系统)
sudo systemctl stop elasticsearch

检查 Elasticsearch 集群健康状态

# 使用 curl 命令检查集群健康状态
curl -X GET "http://localhost:9200/_cat/health?v"

查看节点信息

shellCopy code
# 使用 curl 命令查看节点信息
curl -X GET "http://localhost:9200/_cat/nodes?v"

创建索引

# 使用 curl 命令创建一个名为 "my_index" 的索引
curl -X PUT "http://localhost:9200/my_index"

删除索引

# 使用 curl 命令删除名为 "my_index" 的索引
curl -X DELETE "http://localhost:9200/my_index"

索引文档

# 使用 curl 命令索引一篇文档到 "my_index" 索引中
curl -X POST "http://localhost:9200/my_index/_doc" -d '{
  "field1": "value1",
  "field2": "value2"
}'

搜索文档

# 使用 curl 命令执行搜索查询
curl -X GET "http://localhost:9200/my_index/_search?q=field1:value1"

查看索引的映射(Mapping)

# 使用 curl 命令查看索引 "my_index" 的映射
curl -X GET "http://localhost:9200/my_index/_mapping"

查看索引的统计信息

# 使用 curl 命令查看索引 "my_index" 的统计信息
curl -X GET "http://localhost:9200/my_index/_stats"

查看索引中的文档数量

# 使用 curl 命令查看索引 "my_index" 中的文档数量
curl -X GET "http://localhost:9200/my_index/_count"

聚合数据

# 使用 curl 命令执行聚合操作
curl -X POST "http://localhost:9200/my_index/_search" -d '{
  "size": 0,
  "aggs": {
    "avg_field2": {
      "avg": {
        "field": "field2"
      }
    }
  }
}'

更新文档

# 使用 curl 命令更新文档
curl -X POST "http://localhost:9200/my_index/_update/1" -d '{
  "doc": {
    "field1": "new_value"
  }
}'

删除文档

# 使用 curl 命令删除文档
curl -X DELETE "http://localhost:9200/my_index/_doc/1"

Filebeat

功能介绍

Filebeat是一个轻量型日志采集器,负责采集数据,并通过网路传输给 Logstash。

安装步骤

1)官网下载:https://www.elastic.co/cn/downloads/beats/filebeat

2)解压:tar -zxvf filebeat-7.5.1-darwin-x86_64.tar.gz

3)修改配置:

filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /home/crbt/logs/crbtRingSync/wrapper.log
  fields:
    log_source: vrbt-rd1-hbbj
    log_topic: crbt-web-log

output.kafka:
  hosts: ["10.1.61.121:9092"]
  topic: '%{[fields.log_topic]}'

Filebeat配置详解

  • filebeat.inputs 配置项,设置 Filebeat 读取的日志来源。该配置项是数组类型,可以将 Nginx、MySQL、Spring Boot 每一类,作为数组中的一个元素。
  • output.elasticsearch 配置项,设置 Filebeat 直接写入数据到 Elasticsearch 中。虽然说 Filebeat 5.0 版本以来,也提供了 Filter 功能,但是相比 Logstash 提供的 Filter 会弱一些。所以在一般情况下,Filebeat 并不直接写入到 Elasticsearch 中
  • output.logstash 配置项,设置 Filebeat 写入数据到 Logstash 中
  • output.kafka配置项,设置Filebeat 写入数据到 kafka 中

filebeat常用命令

# 启动filebeat
nohup ./filebeat -e &

# -e 参数表示以前台模式运行  -c 指定配置文件
./filebeat -e -c /home/crbt/lihewei/filebeat-7.5.1-linux-x86_64/filebeat.yml
./filebeat -e -c filebeat.yml


# 查看filebeat是否正常启动
curl http://localhost:5066/
ps -ef | grep filebeat

Logstash

功能介绍

Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到喜欢的“存储库”中。通过定义了一个 Logstash 管道(Logstash Pipeline),来读取、过滤、输出数据。一个 Logstash Pipeline 包含三部分:

  • 【必选】输入(Input): 数据(包含但不限于日志)往往都是以不同的形式、格式存储在不同的系统中,而 Logstash 支持从多种数据源中收集数据(File、Syslog、MySQL、消息中间件等等)
  • 【可选】过滤器(Filter) :实时解析和转换数据,识别已命名的字段以构建结构,并将它们转换成通用格式。
  • 【必选】输出(Output) :Elasticsearch 并非存储的唯一选择,Logstash 提供很多输出选择。

安装步骤

1)下载: https://www.elastic.co/cn/products/logstash

2)解压:unzip logstash-7.5.1.zip

3)修改配置文件

config 目录下,提供了 Logstash 的配置文件,其中,logstash-sample.conf 配置文件,是 Logstash 提供的 Pipeline 配置的示例

crbt@node2:/home/crbt/lihw/logstash-7.5.1/config>ll
total 40
-rw-r--r-- 1 crbt crbt 2019 Dec 17  2019 jvm.options
-rw-r--r-- 1 crbt crbt 7482 Dec 17  2019 log4j2.properties
-rw-rw-r-- 1 crbt crbt  843 Sep 15 19:07 logstash.conf
-rw-r--r-- 1 crbt crbt  342 Dec 17  2019 logstash-sample.conf
-rw-r--r-- 1 crbt crbt 8372 Sep 15 10:53 logstash.yml
-rw-r--r-- 1 crbt crbt 3146 Dec 17  2019 pipelines.yml
-rw-r--r-- 1 crbt crbt 1696 Dec 17  2019 startup.options
crbt@node2:/home/crbt/lihw/logstash-7.5.1/config>cat logstash-sample.conf
# Sample Logstash configuration for creating a simple
# Beats -> Logstash -> Elasticsearch pipeline.

#日志消息从哪里来(这里使用filebeat进行日志收集)
input {
  beats {
    port => 5044
  }
}

#日志信息输出到哪里去(这里写入es数据库)
output {
  elasticsearch {
    hosts => ["http://10.1.61.121:9200"]
    index => "%{[@metadata][beat]}-%{[@metadata][version]}-%{+YYYY.MM.dd}"
  }
}

4)指定配置文件并启动logstash:W

# 启动logstash服务(指定自定义的配置文件logstash.conf)
./logstash -f ../config/logstash.conf

# 后台启动logstash服务🚩
nohup ./logstash -f ../config/logstash.conf &

Input插件

Logstash 的 input 插件用于从不同的数据源中接收数据,并将其发送到 Logstash 事件流中供进一步处理。每个 input 插件都有其特定的配置选项,以适应不同类型的数据源,修改自定义的配置文件即可生效(下面仅列举了几个常用输入方法)

  • File Input 插件:用于从本地文件读取数据。

    input {
      file {
        path => "/path/to/your/logfile.log"
        start_position => "beginning"
        sincedb_path => "/dev/null"
      }
    }
    
  • Beats Input 插件:用于接收来自 Elastic Beats 系列工具(如 Filebeat、Metricbeat)的数据。

    input {
      beats {
        port => 5044
      }
    }
    
  • Kafka Input 插件:用于从 Apache Kafka 主题中消费数据。

    input {
      kafka {
        bootstrap_servers => "kafka-server:9092"
        topics => ["your-topic"]
      }
    }
    

Filter插件

Logstash 的 filter 插件用于对接收的事件进行处理、转换和丰富,以便更好地进行索引和分析。每个 filter 插件都有其特定的配置选项,以适应不同的数据处理需求。以下是一些常见的 Logstash filter 插件及其配置示例:

Grok Filter 插件

Logstash 的 Grok Filter 插件用于从非结构化的文本数据中提取结构化的字段。

filter {
  grok {
    match => { "message" => "%{COMBINEDAPACHELOG}" }
  }
}
Mutate Filter 插件
常见的插件配置选项:
  • add_field:添加新字段到事件中,并指定字段的名称和值。

    rubyCopy code
    mutate {
      add_field => { "new_field" => "New Value" }
    }
    
  • remove_field:从事件中删除指定字段。

    rubyCopy code
    mutate {
      remove_field => [ "field1", "field2" ]
    }
    
  • rename:重命名事件中的字段,将字段从旧名称改为新名称。

    rubyCopy code
    mutate {
      rename => { "old_field" => "new_field" }
    }
    
  • copy:复制字段的值到新的字段中。

    rubyCopy code
    mutate {
      copy => { "source_field" => "destination_field" }
    }
    
  • replace:替换字段的值为新的值。

    rubyCopy code
    mutate {
      replace => { "field_to_replace" => "new_value" }
    }
    
  • update:更新字段的值为新的值,类似于替换操作。

    rubyCopy code
    mutate {
      update => { "field_to_update" => "new_value" }
    }
    
  • convert:将字段的数据类型转换为指定的类型。

    rubyCopy code
    mutate {
      convert => { "numeric_field" => "integer" }
    }
    
  • gsub:使用正则表达式替换字段中的文本。

    rubyCopy code
    mutate {
      gsub => [ "field_to_modify", "pattern_to_replace", "replacement_text" ]
    }
    
  • uppercase/lowercase:将字段值转换为大写或小写。

    rubyCopy code
    mutate {
      uppercase => [ "field_to_uppercase" ]
      lowercase => [ "field_to_lowercase" ]
    }
    
  • strip:删除字段值两端的空格。

    rubyCopy code
    mutate {
      strip => [ "field_to_strip" ]
    }
    
Mutate Filter配置案例:

用于对字段进行修改、重命名和删除。

filter {
  mutate {
    add_field => { "new_field" => "New Value" }
    rename => { "user" => "username" }
    remove_field => [ "message" ]
  }
}

在上面的配置中,我们使用 Mutate Filter 插件执行了以下操作:

  • add_field:我们添加了一个名为 “new_field” 的新字段,并将其值设置为 “New Value”。此时事件将变为:
  • rename:我们重命名了 “user” 字段为 “username”。此时事件将变为:
  • remove_field:我们删除了 “message” 字段。此时事件将不再包含 “message” 字段。
#过滤前
{
  "message": "Log entry",
  "user": "john_doe",
  "status": "success",
  "response_time_ms": 45
}

#过滤后
{
  "username": "john_doe",
  "status": "success",
  "response_time_ms": 45,
  "new_field": "New Value"
}

Output插件

Logstash 的 output 插件用于将处理过的事件发送到各种目标,如 Elasticsearch、文件、数据库等。每个 output 插件都有其特定的配置选项,以适应不同的目标和需求。以下是一些常见的 Logstash output 插件及其配置示例:

  • Elasticsearch Output 插件:用于将事件发送到 Elasticsearch 集群。

    output {
      elasticsearch {
        hosts => ["http://localhost:9200"]
        index => "my_index"
      }
    }
    
  • File Output 插件:用于将事件写入本地文件。

    output {
      file {
        path => "/path/to/output/file.txt"
      }
    }
    
  • Kafka Output 插件:用于将事件发送到 Apache Kafka 主题。

    rubyCopy code
    output {
      kafka {
        topic_id => "my_topic"
        bootstrap_servers => "kafka-server:9092"
      }
    }
    

Kibana

功能介绍

通过 Kibana,您可以对自己的 Elasticsearch 进行可视化,也可以通过插件的方式查看es

安装步骤

1)官网下载:https://www.elastic.co/cn/products/kibana

2)解压 tar -zxvf kibana-7.5.1-darwin-x86_64.tar.gz

3)修改配置,vi config/kibana.yml 命令,编辑 Kibana 配置文件

server.port: 5601
server.host: "0.0.0.0"
elasticsearch.hosts: ["http://localhost:9200"]
kibana.index: ".kibana"

4)启动Kibana:nohup bin/kibana & 命令,后台启动 Kibana 服务。

nohup bin/kibana &

nohup ./kibana &

ps aux | grep kibana

5)测试:访问 http://10.1.61.122:5601/ 地址,查看 Kibana 是否启动成功

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1434933.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ffmpeg命令生成器

FFmpeg 快速入门:命令行详解、工具、教程、电子书 – 码中人的博客FFmpeg 是一个强大的命令行工具,可以用来处理音频、视频、字幕等多媒体文件。本文介绍了 FFmpeg 的基本用法、一些常用的命令行参数,以及常用的可视化工具。https://blog.mzh…

什么是S参数

S参数是网络参数,定义了反射波和入射波之间的关系,给定频率的S参数矩阵指定端口反射波b的矢量相对于端口入射波a的矢量,如下所示: bS∙a 在此基础上,如下图所示,为一个常见的双端口网络拓扑图:…

GPT-1, GPT-2, GPT-3, GPT-3.5, GPT-4论文内容解读

目录 1 ChatGPT概述1.1 what is chatGPT1.2 How does ChatGPT work1.3 The applications of ChatGPT1.3 The limitations of ChatGPT 2 算法原理2.1 GPT-12.1.1 Unsupervised pre-training2.1.2 Supervised fine-tuning2.1.3 语料2.1.4 分析 2.2 GPT-22.3 GPT-32.4 InstructGPT…

【计算机网络】计算机网络复习资料(期末)

复习要点 一、填空题 1.计算机网络的两个重要基本特点 连通性、共享 2.计算机中的端口号类型 两类端口号 { 服务器端 { 熟知端口号(系统端口号)数值为0~1023 登记端口号,1024~49151 } 客户端使用的端口号:短…

uniapp vue3怎么调用uni-popup组件的this.$refs.message.open() ?

vue2代码 <!-- 提示信息弹窗 --><uni-popup ref"message" type"message"><uni-popup-message :type"msgType" :message"messageText" :duration"2000"></uni-popup-message></uni-popup>typ…

架构学习(四):scrapy下载中间件实现动态切换User-Agent

scrapy下载中间件实现动态与固定UserAgent 前言关卡&#xff1a;实现动态切换User-Agentscrapy设置User-Agent方式梳理User-Agent生效梳理为何选择在下载中间件中实现自定义User-Agent下载中间件 结束 前言 请求头User-Agent是比较常规的反爬手段&#xff0c;不同站点对其检测…

uniapp+uView 【详解】录音,自制音频播放器

效果预览 代码实现 <template><view class"btnListBox"><view class"audioBox" v-if"audioLength"><u-row><u-col span"2"><u--text aligncenter :text"currentTime"></u--text>…

seatunnel数据集成(三)多表同步

seatunnel数据集成&#xff08;一&#xff09;简介与安装seatunnel数据集成&#xff08;二&#xff09;数据同步seatunnel数据集成&#xff08;三&#xff09;多表同步seatunnel数据集成&#xff08;四&#xff09;连接器使用 seatunnel除了单表之间的数据同步之外&#xff0c;…

BC100 有序序列合并

描述 输入两个升序排列的序列&#xff0c;将两个序列合并为一个有序序列并输出。 数据范围&#xff1a; 1≤n,m≤1000 1≤n,m≤1000 &#xff0c; 序列中的值满足 0≤val≤30000 输入描述&#xff1a; 输入包含三行&#xff0c; 第一行包含两个正整数n, m&#xff0c;用空…

前端使用pdf.js进行pdf文件预览的第二种方式:Viewer.html

背景 最近需要实现一个PDF文档预览的功能&#xff0c;按理说&#xff0c;如果只是简单的预览&#xff0c;使用<embed>、<object>等就可以实现。 但是&#xff0c;我们的需求要实现搜索&#xff01;而且&#xff0c;文档还都超大&#xff0c;均300页以上。那<e…

【网站项目】039菜匣子优选生鲜电商系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

网络编程-序列化和反序列化/应用层协议/

预备知识 理解为什么要应用层协议&#xff1f; 在学过套接字编程后&#xff0c;我们对协议的理解更深了一步&#xff0c;协议也就是一种约定&#xff0c;也可以通俗理解为一种口头约定&#xff0c;对于通信双方来说是必须要遵守的。TCP和UDP协议它们是传输层控制协议&#xf…

XAI:探索AI决策透明化的前沿与展望

文章目录 &#x1f4d1;前言一、XAI的重要性二、为什么需要可解释人工智能三、XAI的研究与应用四、XAI的挑战与展望 &#x1f4d1;前言 随着人工智能技术的快速发展&#xff0c;它已经深入到了我们生活的方方面面&#xff0c;从智能手机、自动驾驶汽车到医疗诊断和金融投资&…

[UI5 常用控件] 07.SplitApp,SplitContainer

文章目录 前言1. SplitApp1.1 组件结构1.2 Demo1.3 mode属性 2. SplitContainer 前言 本章节记录常用控件SplitApp&#xff0c;SplitContainer。主要功能是在左侧显示Master页面&#xff0c;右侧显示Detail页面。 Master页面和Detail页面可以由多个Page组成&#xff0c;并支持…

2024数学建模美赛F题Reducing Illegal Wildlife Trade原创论文讲解(含完整python代码)

大家好呀&#xff0c;从发布赛题一直到现在&#xff0c;总算完成了数学建模美赛本次F题目非法野生动物贸易完整的成品论文。 本论文可以保证原创&#xff0c;保证高质量。绝不是随便引用一大堆模型和代码复制粘贴进来完全没有应用糊弄人的垃圾半成品论文。 F题论文共42页&…

ios设备解锁 --Apeaksoft iOS Unlocker

Apeaksoft iOS Unlocker是一款针对iOS系统的密码解锁工具。其主要功能包括解锁多种锁屏类型&#xff0c;包括数字密码、Touch ID、Face ID和自定义密码。此外&#xff0c;它还可以帮助用户删除iPhone密码以进入锁屏设备&#xff0c;忘记的Apple ID并将iPhone激活为新的&#xf…

2023年12月 Python(四级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python等级考试(1~6级)全部真题・点这里 一、单选题(共25题,共50分) 第1题 下列有关分治算法思想的描述不正确的是?( ) A:将问题分解成的子问题具有相同的模式。 B:将问题分解出的各个子问题相互之间有公共子问题。 C:当问题足够小时, 可以直接求解。 D:可以将…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之QRCode组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之QRCode组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、QRCode组件 用于显示单个二维码的组件。 子组件 无。 接口 QRCode(value: st…

MongoDB的操作和理解

什么是MongoDB? MongoDB&#xff1a;基于分布式文件存储的数据库由C语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。MongoDB是一个介于关系数据库和非关系数据库(nosql)之间的产品&#xff0c;是非关系数据库当中功能最丰富&#xff0c;最像关系数据库的。 Mo…

【LeetCode】每日一题 2024_2_4 Nim 游戏(找规律,博弈论)

文章目录 LeetCode&#xff1f;启动&#xff01;&#xff01;&#xff01;题目&#xff1a;Nim 游戏题目描述代码与解题思路 LeetCode&#xff1f;启动&#xff01;&#xff01;&#xff01; 题目&#xff1a;Nim 游戏 题目链接&#xff1a;292. Nim 游戏 题目描述 代码与解题…