目标检测:2如何生成自己的数据集

news2025/1/15 17:31:28

目录

1. 数据采集

2. 图像标注

3. 开源已标记数据集

4. 数据集划分

参考:


1. 数据采集


数据采集是深度学习和人工智能任务中至关重要的一步,它为模型提供了必要的训练样本和测试数据。在实际应用中,数据采集的方法多种多样,每种方法都有其独特的优势和适用场景。本次将介绍如何标记数据集、

一、什么是数据标注?
数据标注即通过分类、画框、标注、注释等,对图片、语 音、文本、视频等数据进行处理,标记对象的特征,以作为机器学习基础 素材的过程。机器学习需要反复学习以训练模型和提高精度,同时自动驾驶、语言大模型、AI医疗、等各大应用场景都需要标注数据。

二、数据标注的分类
对于数据标注,按照不同的分类标准,可以有不同划分。以标注对象作为分类基础,可将数据标注划分为图像标注、语音标注、文本标注以及视频标注

2. 图像标注

图像标注是一个将标签添加到图像上的过程。图像标注类型包括拉框、语义分割、实例分割、 目标检测、图像分类、关键点、线段标注、文字识别转写、点云标注、属性判断等。图像标注在人工智能与各行各业应用相结合的研究过程中扮演着重要的角色:通过对路况图片中的汽车和行人进行筛选、分类、标框, 可以提高安防摄像头以及无人驾驶系统的识别能力。

  • 通过LabelImg来标注矩形框;
  • 通过LabelMe来进行多边形框的标定;
  • 通过PPOCRLabel来完成文本识别标注任务;
  • 通过roLabelImg来解决旋转目标检测的功能;
  • 通过DarkLabel来完成视频文件的标注及对象的跟踪功能;
  • 通过ELAN完成对视频序列中人物动作的识别以及对应字幕的捕捉;

简单的使用,在线标注数据集的工具Make Sense。

开始标注

打开Make Sense点击Get Start即可开始标注。

进入下一个页面,点击Drop images并选中所有数据集。

点击 Object Detection ,并添加标签,笔者这里以安全帽为例,所以创建标签Helmet。然后手动画出安全帽对应的矩形。

 

               

标注完成后,点击Action->Export Annotation,即可导出Yolo格式的标签。

导出的文件如下所示

<object-class> <x> <y> <width> <height>

其中,object-class为类别,x,y,width和height是指目标的中心点坐标及宽高信息。

3. 开源已标记数据集


使用开源数据集是一种常见且有效的数据采集方法。开源数据集通常已经过标记和验证,可大大节省数据采集和标注的时间和资源成本。例如ImageNet数据集,包含超过1400万张图像,可用于深度学习模型训练。此外,还有像Coco、DOTA数据集等,笔者在这里为大家整理了常见的深度学习开源数据集地址,具体如下,以供参考。

coco数据集:https://cocodataset.org
Pascal Voc数据集:https://pjreddie.com/projects/pascal-voc-dataset-mirror/

猫咪数据集:http://m6z.cn/5TAgbw
宠物图像数据集:http://m6z.cn/5TAgdC
HMDB人类动作识别数据集:http://m6z.cn/6gGlzF
KITTI道路数据集:http://m6z.cn/5xz4OW
MPII人体模型数据集:http://m6z.cn/69aaIe
天池铝型材表面缺陷数据集:http://m6z.cn/61EksR
防护装备-头盔和背心检测:http://m6z.cn/61zarT
Linkopings交通标志数据集:http://m6z.cn/68ldS0
RMFD口罩遮挡人脸数据集:http://m6z.cn/61z9Fv
生活垃圾数据集:http://m6z.cn/6n5Adu
火焰和烟雾图像数据集:http://m6z.cn/6fzn0f
MTFL人脸识别数据集:http://m6z.cn/6fHmaT

4. 数据集划分

有了数据集之后,对齐划分,分别分为train,val,test三块。

创建helmet_dataset/images保存图像文件,创建helmet_dataset/labels保存标记文件。

分割脚本如下:

import os
import shutil
import zipfile
from sklearn.model_selection import train_test_split

# 定义目录路径
dataset_directory = r'helmet_dataset'
images_directory = os.path.join(dataset_directory, 'images')
labels_directory = os.path.join(dataset_directory, 'labels')

# 定义备份 zip 文件路径
backup_zip_path = os.path.join(dataset_directory, 'helmet_dataset.zip')

# 将整个数据集目录压缩备份
with zipfile.ZipFile(backup_zip_path, 'w') as backup_zip:
    for folder in [images_directory, labels_directory]:
        for root, dirs, files in os.walk(folder):
            for file in files:
                file_path = os.path.join(root, file)
                backup_zip.write(file_path, os.path.relpath(file_path, dataset_directory))

# 所有图像文件名(不带扩展名)的列表
image_filenames = [os.path.splitext(filename)[0] for filename in os.listdir(images_directory) if filename.endswith('.jpg')]

# 定义拆分比例
train_ratio = 0.7
validation_ratio = 0.2
test_ratio = 0.1

# 执行拆分
train_filenames, test_filenames = train_test_split(image_filenames, test_size=1 - train_ratio)
validation_filenames, test_filenames = train_test_split(test_filenames, test_size=test_ratio/(test_ratio + validation_ratio))

# 创建目录并移动文件的函数
def create_and_move_files(file_list, source_folder, destination_folder, file_extension):
    os.makedirs(destination_folder, exist_ok=True)
    for filename in file_list:
        shutil.move(os.path.join(source_folder, filename + file_extension),
                    os.path.join(destination_folder, filename + file_extension))

# 为每个集创建目录并移动文件
sets_directories = {
    'train': os.path.join(dataset_directory, 'train'),
    'val': os.path.join(dataset_directory, 'val'),
    'test': os.path.join(dataset_directory, 'test')
}

for set_name, file_list in zip(['train', 'val', 'test'], [train_filenames, validation_filenames, test_filenames]):
    images_set_directory = os.path.join(sets_directories[set_name], 'images')
    labels_set_directory = os.path.join(sets_directories[set_name], 'labels')
    create_and_move_files(file_list, images_directory, images_set_directory, '.jpg')
    create_and_move_files(file_list, labels_directory, labels_set_directory, '.txt')

# 删除空的images和labels文件夹
for folder in [images_directory, labels_directory]:
    if os.path.exists(folder) and not os.listdir(folder):
        os.rmdir(folder)

# 返回备份文件路径和已创建目录的路径
print(backup_zip_path, sets_directories)

创建好的数据集,留待使用,下一次学习如何利用数据集训练。

参考:

目标检测:1预备知识

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1432864.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux网络通信——TCP/OSI七层模型/TCP/IP(五层或四层模型)/HTTP报文传输原理

文章目录 消息的传输什么是OSI七层模型OSI七层模型的内容物理层&#xff08;Physical Layer&#xff09;&#xff1a;数据链路层&#xff08;Data Link Layer&#xff09;&#xff1a;网络层&#xff08;Network Layer&#xff09;&#xff1a;传输层&#xff08;Transport Lay…

Docker基础与持续集成

docker 基础知识&#xff1a; docker与虚拟机 !左边为虚拟机&#xff0c;右边为docker环境 – Server :物理机服务器Host OS &#xff1a;构建的操作系统Hypervisor &#xff1a;一种虚拟机软件&#xff0c;装了之后才能虚拟化操作系统Guest OS &#xff1a;虚拟化的操作系统…

操作系统-01-Mac 苹果操作系统 Brew /端口占用

Brew brew 又叫 Homebrew&#xff0c;是 Mac OSX上的软件包管理工具。类似 ubuntu 中的 apt-get。 Install $ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"如下 houbinbindeMacBook-Pro:tools houbin…

机器学习系列——(十)支持向量机

一、背景 支持向量机&#xff08;Support Vector Machine&#xff0c;SVM&#xff09;是一种用于分类、回归和离群点检测等领域的监督学习方法。它最初由Vapnik和Cortes在1995年提出&#xff0c;被认为是机器学习领域中最成功的算法之一。 二、原理 2.1 线性SVM 我们先从最简…

django+flask网上购物商城系统的设计与实现python-vue

全球经济在快速的发展&#xff0c;中国更是进步飞速&#xff0c;这使得国内的互联网技术进入了发展的高峰时期&#xff0c;这让中外资本不断转向互联网这个大市场[3]。在这个信息高度发达的现在&#xff0c;利用网络进行信息管理改革已经成为了人们追捧的一种趋势。“网上购物系…

Qt案例 在对QGraphicsView视图修改和撤销修改图元操作时,使用命令模式实现。

当项目中有QGraphicsView视图直接修改图元的功能时&#xff0c;常会有CtriZ和CtrlY这种执行与撤销图元修改的功能&#xff0c;以便于在修改图元后能够进行一个还原/执行操作&#xff0c;此时就适合使用命令模式设计来实现这个功能。 以下示例在WINDOWS系统&#xff0c;Qt Creat…

【蓝桥杯冲冲冲】动态规划学习 [NOIP2003 提高组] 加分二叉树

【蓝桥杯冲冲冲】动态规划学习 [NOIP2003 提高组] 加分二叉树 蓝桥杯备赛 | 洛谷做题打卡day24 文章目录 蓝桥杯备赛 | 洛谷做题打卡day24[NOIP2003 提高组] 加分二叉树题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示数据规模与约定思路 题解代码我的一些话 [NOI…

MySQL如何实时同步数据到ES?试试阿里开源的Canal

前言 前几天在网上冲浪的时候发现了一个比较成熟的开源中间件—— Canal 。在了解了它的工作原理和使用场景后&#xff0c;顿时产生了浓厚的兴趣。今天&#xff0c;就让我们跟随我的脚步&#xff0c;一起来揭开它神秘的面纱吧。 目录 前言 简介 工作原理 MySQL主备复制…

两种方式实现文本超出指定行数显示展开收起...

需要实现这样一个功能 默认高度下文本超出隐藏&#xff0c;点击展开可查看所有内容&#xff0c;点击收起可折叠 方法一&#xff1a;通过html和css实现 代码部分 html:<div className"expand-fold"><input id"check-box" type"checkbox&qu…

(4)【Python数据分析进阶】Machine-Learning模型与算法应用-回归、分类模型汇总

线性回归、逻辑回归算法应用请参考: https://codeknight.blog.csdn.net/article/details/135693621https://codeknight.blog.csdn.net/article/details/135693621本篇主要介绍决策树、随机森林、KNN、SVM、Bayes等有监督算法以及无监督的聚类算法和应用PCA对数据进行降维的算法…

2024年生成式AI芯片市场规模将达500亿美元

1月24日&#xff0c;德勤发布《2024科技、传媒和电信行业预测》中文版报告&#xff0c;2024年是科技、传媒和电信行业关键的一年&#xff0c;不少科技公司正利用生成式AI升级软件和服务&#xff0c;预计今年全球生成式人工智能芯片销售额可能达到500亿美元以上。 2024年将有许…

量子计算帮助解锁对衰老和疾病的理解

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

初探unity中的ECS

ECS是一种软件架构模式&#xff0c;就像MVC一样。ECS最早在游戏《守望先锋》中提及到的相关链接。ECS具体是指实体&#xff08;entity&#xff09;、 组件&#xff08;component&#xff09;和系统&#xff08;system&#xff09;&#xff1a; 实体&#xff1a;实体是一个ID&a…

IDEA如何进行远程Debug调试(二)解决jar包运行报错的问题

一、解决jar包运行报错的问题 上文提到在进行debug远程调试的时候&#xff0c;打包后的jar包本地无法运行&#xff0c;报如下的错误 ​​​​​​​IDEA如何进行远程Debug调试-CSDN博客 查看报错是找不到对应的类&#xff0c;那么我们使用jd-gui的反编译工具&#xff0c;看看…

opencv中使用cuda加速图像处理

opencv大多数只使用到了cpu的版本&#xff0c;实际上对于复杂的图像处理过程用cuda&#xff08;特别是高分辨率的图像&#xff09;可能会有加速效果。是否需要使用cuda需要思考&#xff1a; 1、opencv的cuda库是否提供了想要的算子。在CUDA-accelerated Computer Vision你可以…

Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(三)

原文&#xff1a;Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第六章&#xff1a;决策树 决策树是多功能的机器学习算法&#xff0c;可以执行分类和回归任务&#xff0c;甚至多输出任务。它们…

Android BitmapShader setLocalMatrix缩放Bitmap高度重新onMeasure,Kotlin

Android BitmapShader setLocalMatrix缩放Bitmap高度重新onMeasure&#xff0c;Kotlin <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://sc…

Kubernetes基础(十一)-CNI网络插件用法和对比

1 CNI概述 1.1 什么是CNI&#xff1f; Kubernetes 本身并没有实现自己的容器网络&#xff0c;而是借助 CNI 标准&#xff0c;通过插件化的方式来集成各种网络插件&#xff0c;实现集群内部网络相互通信。 CNI&#xff08;Container Network Interface&#xff0c;容器网络的…

JavaScript原型和原型链是什么

JavaScript原型和原型链是Web前端技术中的重要概念&#xff0c;了解它们可以帮助开发者更好地理解JavaScript对象的创建和继承机制。本文将深入探讨JavaScript原型和原型链&#xff0c;并提供相关的示例代码和解析。 首先&#xff0c;让我们了解一下JavaScript中的原型。每个J…

ubuntu 18.04修改网卡名称

1.原来网卡配置 现在要把enp3s0的名称改为eth0 2. 总共修改三个文件 第一个修改 sudo vi /etc/default/grub 添加最后一行 GRUB_CMDLINE_LINUX"net.ifnames0 biosdevname0" 第二个修改sudo vi /etc/udev/rules.d/70-persistent-net.rules 如果没有就新建文件&a…