Hive 主要内容一览

news2025/1/12 10:07:50

Hive架构

  1. 用户接口:Client

CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)

  1. 元数据:Metastore

元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore。

  1. Hadoop

使用HDFS进行存储,使用MapReduce进行计算。

  1. 驱动器:Driver

(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。

(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。

(3)优化器(Query Optimizer):对逻辑执行计划进行优化。

(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

Hive运行原理

Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。

其实,还可以这样理解:Hive要做的就是将SQL翻译成MapReduce程序代码。实际上,Hive内置了很多Operator,每个Operator完成一个特定的计算过程,Hive将这些Operator构造成一个有向无环图DAG,然后根据这些Operator之间是否存在shuffle将其封装到map或者reduce函数中,之后就可以提交给MapReduce执行了。

内部表与外部表

不同点

1 外部表不会加载数据到Hive,减少数据传输、数据还能共享。

共享的理解就是:当我们删除一个内部表时,Hive 也会删除这个表中数据。内部表不适合和其他工具共享数据。

2 Hive创建内部表时,会将数据移动到数据仓库指向的路径。

创建外部表时,仅记录数据所在的路径,不对数据的位置做任何改变。

在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。这样外部表相对来说更加安全些,数据组织也更加灵活,方便共享源数据。

场景选择

在公司中绝大多数场景都是外部表。

自己使用的临时表,才会创建内部表。

Hive分区与分桶

Hive分区

是按照数据表的某列或者某些列分为多区,在hive存储上是hdfs文件,也就是文件夹形式。现在最常用的跑T+1数据,按当天时间分区的较多。

把每天通过sqoop或者datax拉取的一天的数据存储一个区,也就是所谓的文件夹与文件。在查询时只要指定分区字段的值就可以直接从该分区查找即可。创建分区表的时候,要通过关键字 partitioned by (column name  string)声明该表是分区表,并且是按照字段column name进行分区,column name值一致的所有记录存放在一个分区中,分区属性name的类型是string类型。

当然,可以依据多个列进行分区,即对某个分区的数据按照某些列继续分区。

向分区表导入数据的时候,要通过关键字partition((column name="xxxx")显示声明数据要导入到表的哪个分区

设置分区的影响

  1. 首先是hive本身对分区数有限制,不过可以修改限制的数量。

set hive.exec.dynamic.partition=true;
set hive.exec.max.dynamic.partitions=1000; 
set hive.exec.dynamic.partition.mode=nonstrict; 
set hive.exec.parallel.thread.number=264;

  1. hdfs对单个目录下的目录数量或者文件数量也是有限制的,也是可以修改的;
  2. NN的内存肯定会限制,这是最重要的,如果分区数很大,会影响NN服务,进而影响一系列依赖于NN的服务。所以最好合理设置分区规则,对小文件也可以定期合并,减少NN的压力。

Hive的分桶

在分区数量过于庞大以至于可能导致文件系统崩溃时,我们就需要使用分桶来解决问题

分桶是相对分区进行更细粒度的划分。分桶则是指定分桶表的某一列,让该列数据按照哈希取模的方式随机、均匀地分发到各个桶文件中。因为分桶操作需要根据某一列具体数据来进行哈希取模操作,故指定的分桶列必须基于表中的某一列(字段) 要使用关键字clustered by 指定分区依据的列名,还要指定分为多少桶:

create table test(id int,name string) cluster by (id) into 5 buckets .......

insert into buck select id ,name from p cluster by (id)

Hive分区分桶区别

  1. 分区是表的部分列的集合,可以为频繁使用的数据建立分区,这样查找分区中的数据时就不需要扫描全表,这对于提高查找效率很有帮助。
  2. 不同于分区对列直接进行拆分,桶往往使用列的哈希值对数据打散,并分发到各个不同的桶中从而完成数据的分桶过程。
  3. 分区和分桶最大的区别就是分桶随机分割数据库,分区是非随机分割数据库。

函数

本环节不再介绍简单的函数,比如:'if' ,'is not null' ,'=='等等这类的函数。

内置函数

(1) NVL

给值为NULL的数据赋值,它的格式是NVL( value,default_value)。它的功能是如果value为NULL,则NVL函数返回default_value的值,否则返回value的值,如果两个参数都为NULL ,则返回NULL

select nvl(column, 0) from xxx;

(2)行转列

函数

描述

CONCAT(string A/col, string B/col…)

返回输入字符串连接后的结果,支持任意个输入字符串

CONCAT_WS(separator, str1, str2,...)

第一个参数间的分隔符,如果分隔符是 NULL,返回值也将为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。分隔符将被加到被连接的字符串之间。

COLLECT_SET(col)

将某字段的值进行去重汇总,产生array类型字段

COLLECT_LIST(col)

函数只接受基本数据类型,它的主要作用是将某字段的值进行不去重汇总,产生array类型字段。

(3)列转行(一列转多行)

Split(str, separator): 将字符串按照后面的分隔符切割,转换成字符array。

EXPLODE(col):
将hive一列中复杂的array或者map结构拆分成多行。

LATERAL VIEW

用法:

LATERAL VIEW udtf(expression) tableAlias AS columnAlias

解释:lateral view用于和split, explode等UDTF一起使用,它能够将一行数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。

lateral view首先为原始表的每行调用UDTF,UDTF会把一行拆分成一或者多行,lateral view再把结果组合,产生一个支持别名表的虚拟表。

准备数据源测试

movie

category

《功勋》

记录,剧情

《战狼2》

战争,动作,灾难

SQL

SELECT movie,category_name 
FROM movie_info 
lateral VIEW
explode(split(category,",")) movie_info_tmp  AS category_name ;

测试结果

《功勋》      记录
《功勋》      剧情
《战狼2》     战争
《战狼2》     动作
《战狼2》     灾难

窗口函数

(1)OVER()

定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变而变化。

(2)CURRENT ROW(当前行)

语法

n PRECEDING:往前n行数据

n FOLLOWING:往后n行数据

(3)UNBOUNDED(无边界)

UNBOUNDED PRECEDING 前无边界,表示从前面的起点
unbounded perceding/following
UNBOUNDED FOLLOWING后无边界,表示到后面的终点

SQL案例:由起点到当前行的聚合

select 
    sum(money) over(partition by user_id order by pay_time rows between UNBOUNDED PRECEDING and current row) 
from or_order;

SQL案例:当前行和前面一行做聚合

select 
    sum(money) over(partition by user_id order by pay_time rows between 1 PRECEDING and current row) 
from or_order;

SQL案例:当前行和前面一行和后一行做聚合

select 
    sum(money) over(partition by user_id order by pay_time rows between 1 PRECEDING AND 1 FOLLOWING )
from or_order;

SQL案例:当前行及后面所有行

select 
    sum(money) over(partition by user_id order by pay_time rows between current row and UNBOUNDED FOLLOWING  )
from or_order;

(4)LAG(col,n,default_val)

往前第n行数据,没有的话default_val

(5)LEAD(col,n, default_val)

往后第n行数据,没有的话default_val

SQL案例:查询用户购买明细以及上次的购买时间和下次购买时间

select 
	user_id,,pay_time,money,
	
	lag(pay_time,1,'1970-01-01') over(PARTITION by name order by pay_time) prev_time,
	
	lead(pay_time,1,'1970-01-01') over(PARTITION by name order by pay_time) next_time
from or_order;

(6)FIRST_VALUE(col,true/false)

当前窗口下的第一个值,第二个参数为true,跳过空值。

(7)LAST_VALUE (col,true/false)

当前窗口下的最后一个值,第二个参数为true,跳过空值。

SQL案例:查询顾用户每个月第一次的购买时间 和 每个月的最后一次购买时间

select
	FIRST_VALUE(pay_time) 
	    over(
	        partition by user_id,month(pay_time) order by pay_time 
	        rows between UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING
	        ) first_time,
	
	LAST_VALUE(pay_time) 
	    over(partition by user_id,month(pay_time) order by pay_time rows between UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING
	    ) last_time
from or_order;

(8)NTILE(n)

把有序窗口的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。(用于将分组数据按照顺序切分成n片,返回当前切片值)

SQL案例:查询前25%时间的订单信息

select * from (
    select User_id,pay_time,money,
    
    ntile(4) over(order by pay_time) sorted
    
    from or_order
) t
where sorted = 1;

4个By

(1)Order By

全局排序,只有一个Reducer。

(2)Sort By

分区内有序。

(3)Distrbute By

类似MR中Partition,进行分区,结合sort by使用。

(4) Cluster By

当Distribute by和Sorts by字段相同时,可以使用Cluster by方式。Cluster by除了具有Distribute by的功能外还兼具Sort by的功能。但是排序只能是升序排序,不能指定排序规则为ASC或者DESC。

在生产环境中Order By用的比较少,容易导致OOM。

在生产环境中Sort By+ Distrbute By用的多。

排序函数

(1)RANK()

排序相同时会重复,总数不会变

1
1
3
3
5

(2)DENSE_RANK()

排序相同时会重复,总数会减少

1
1
2
2
3

(3)ROW_NUMBER()

会根据顺序计算

1
2
3
4
5

Hive 优化

首先要这样优化的原理,再去适当去调节参数和选择方案。

1. 表的优化

(1) 小表、大表Join

将key相对分散,并且数据量小的表放在join的左边,这样可以有效减少内存溢出错误发生的概率;再进一步,可以使用map join让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。

(2) 大表Join大表

a. 空key过滤

有时join超时是因为某些key对应的数据太多,而相同key对应的数据都会发送到相同的reducer上,从而导致内存不够。此时我们应该仔细分析这些异常的key,很多情况下,这些key对应的数据是异常数据,我们需要在SQL语句中进行过滤。

b. 空key转换

有时虽然某个key为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在join的结果中,此时我们可以表a中key为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的reducer上。

(3) MapJoin

如果不指定MapJoin或者不符合MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成join。容易发生数据倾斜。可以用MapJoin把小表全部加载到内存在map端进行join,避免reducer处理。

设置自动选择Mapjoin
set hive.auto.convert.join = true; 默认为true

大表小表的阈值设置(默认25M以下认为是小表):
set hive.mapjoin.smalltable.filesize=25000000;

(4) Group By

Map阶段同一Key数据分发给一个reduce,当一个key数据过大时就倾斜了。并不是所有的聚合操作都需要在Reduce端完成,很多聚合操作都可以先在Map端进行部分聚合,最后在Reduce端得出最终结果。

(5) 开启Map端聚合

// 是否在Map端进行聚合,默认为True
set hive.map.aggr = true

// 在Map端进行聚合操作的条目数目
set hive.groupby.mapaggr.checkinterval = 100000

// 有数据倾斜的时候进行负载均衡(默认是false)
set hive.groupby.skewindata = true

对数据倾斜负载均衡的理解

会有两个MR Job。第一个MR Job中,Map的输出结果会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MR Job再根据预处理的数据结果按照Group By Key分布到Reduce中(这个过程可以保证相同的Group By Key被分布到同一个Reduce中),最后完成最终的聚合操作。

(6) Count(Distinct) 去重统计

由于COUNT DISTINCT操作需要用一个Reduce Task来完成,这一个Reduce需要处理的数据量太大,就会导致整个Job很难完成,一般COUNT DISTINCT使用先GROUP BY再COUNT的方式替换,但是需要注意group by造成的数据倾斜问题。

(7) 笛卡尔积

尽量避免笛卡尔积,join的时候不加on条件,或者无效的on条件,Hive只能使用1个reducer来完成笛卡尔积。

(8) 行列过滤

列处理:在SELECT中,只拿需要的列,如果有,尽量使用分区过滤,少用SELECT *。

行处理:在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在Where后面,那么就会先全表关联,之后再过滤

2. 合理设置Map及Reduce数

首先理清楚Map数是越多越好吗?

逻辑:如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当作一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。

保证每个map处理接近128m的文件块是不是就可以了?

逻辑:比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时

复杂文件增加Map数

原理:文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。

computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M

调整maxSize最大值。让maxSize最大值低于blocksize就可以增加map的个数。

小文件进行合并,减少map数

在map执行前合并小文件,减少map数:CombineHiveInputFormat具有对小文件进行合并的功能(系统默认的格式)。

set hive.input.format= org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

Map-Reduce的任务结束时合并小文件的设置

// 在map-only任务结束时合并小文件,默认true
SET hive.merge.mapfiles = true;

// 在map-reduce任务结束时合并小文件,默认false
SET hive.merge.mapredfiles = true;

// 合并文件的大小,默认256M
SET hive.merge.size.per.task = 268435456;

//当输出文件的平均大小小于该值时,启动一个独立的map-reduce任务进行文件merge
SET hive.merge.smallfiles.avgsize = 16777216;

3. 合理设置Reduce数

同样考虑是不是越多越好?

过多的启动和初始化reduce也会消耗时间和资源。有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题。

(1)数据量设置

// 每个Reduce处理的数据量默认是256MB
hive.exec.reducers.bytes.per.reducer=256000000

// 每个任务最大的reduce数,默认为1009
hive.exec.reducers.max=1009

// 计算reducer数的公式
N=min(hive.exec.reducers.max,总输入数据量/hive.exec.reducers.bytes.per.reducer)

(2)文件配置

mapreduce.job.reduces = 15

4. 并行执行

通过设置参数hive.exec.parallel值为true,就可以开启并发执行。不过,在共享集群中,需要注意下,如果job中并行阶段增多,那么集群利用率就会增加。建议在数据量大,sql很长的时候使用,数据量小,sql比较的小开启有可能还不如之前快。

//打开任务并行执行,默认为false
set hive.exec.parallel=true; 

//同一个sql允许最大并行度,默认为8。
set hive.exec.parallel.thread.number=16;

5. JVM重用

JVM来执行map和Reduce任务的。这时JVM的启动过程可能会造成相当大的开销,尤其是执行的job包含有成百上千task任务的情况。JVM重用可以使得JVM实例在同一个job中重新使用N次。

缺点是,开启JVM重用将一直占用使用到的task插槽,以便进行重用,直到任务完成后才能释放。

set mapreduce.job.jvm.numtasks=10

6. 列式存储

因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性地设计更好的设计压缩算法。

TEXTFILE和SEQUENCEFILE的存储格式都是基于行存储的;

ORC和PARQUET是基于列式存储的。

7. 压缩(选择快的)

// 启用中间数据压缩
set hive.exec.compress.intermediate=true 

// 启用最终数据压缩
set mapreduce.map.output.compress=true 

// 设置压缩方式
set mapreduce.map.outout.compress.codec=

org.apache.hadoop.io.compress.DefaultCodec
org.apache.hadoop.io.compress.GzipCodec
org.apache.hadoop.io.compress.BZip2Codec
org.apache.hadoop.io.compress.Lz4Codec

Hive数据倾斜

Hive数据倾斜表现

就是单说hive自身的MR引擎:发现所有的map task全部完成,并且99%的reduce task完成,只剩下一个或者少数几个reduce task一直在执行,这种情况下一般都是发生了数据倾斜。说白了就是Hive的数据倾斜本质上是MapReduce的数据倾斜。

Hive数据倾斜的原因

在MapReduce编程模型中十分常见,大量相同的key被分配到一个reduce里,造成一个reduce任务累死,其他reduce任务闲死。查看任务进度,发现长时间停留在99%或100%,查看任务监控界面,只有少量的reduce子任务未完成。

  1. key分布不均衡。
  2. 业务问题或者业务数据本身的问题,某些数据比较集中。

(1)join小表:其中一个表是小表,但是key比较集中,导致的就是某些Reduce的值偏高。

(2)空值或无意义值:如果缺失的项很多,在做join时这些空值就会非常集中,拖累进度。

(3)group by:维度过小。

(4)distinct:导致最终只有一个Reduce任务。

Hive数据倾斜解决

  1. group by代替distinct 要统计某一列的去重数时,如果数据量很大,count(distinct)就会非常慢,原因与order by类似,count(distinct)逻辑导致最终只有一个Reduce任务。
  2. 对1再优化:group by配置调整

(1)map端预聚合

(2)group by时,combiner在map端做部分预聚合,可以有效减少shuffle数据量。

(3)checkinterval:设置map端预聚合的行数阈值,超过该值就会分拆job。

hive.map.aggr=true //默认

hive.groupby.mapaggr.checkinterval=100000 // 默认

(4)倾斜均衡配置 Hive自带了一个均衡数据倾斜的配置项。

其实现方法是在group by时启动两个MR job。第一个job会将map端数据随机输入reducer,每个reducer做部分聚合,相同的key就会分布在不同的reducer中。第二个job再将前面预处理过的数据按key聚合并输出结果,这样就起到了均衡的效果。

hive.groupby.skewindata=false // 默认

  1. join基础优化

(1) Hive在解析带join的SQL语句时,会默认将最后一个表作为大表,将前面的表作为小表,将它们读进内存。如果表顺序写反,如果大表在前面,引发OOM。不过现在hive自带优化。

(2) map join:特别适合大小表join的情况,大小表join在map端直接完成join过程,没有reduce,效率很高。

(3)多表join时key相同:会将多个join合并为一个MR job来处理,两个join的条件不相同,就会拆成多个MR job计算。

  1. sort by代替order by

将结果按某字段全局排序,这会导致所有map端数据都进入一个reducer中,在数据量大时可能会长时间计算不完。使用sort by,那么还是会视情况启动多个reducer进行排序,并且保证每个reducer内局部有序。为了控制map端数据分配到reducer的key,往往还要配合distribute by一同使用。如果不加distribute by的话,map端数据就会随机分配到reducer。

  1. 单独处理倾斜key

一般来讲倾斜的key都很少,我们可以将它们抽样出来,对应的行单独存入临时表中,然后打上随机数前缀,最后再进行聚合。或者是先对key做一层hash,先将数据随机打散让它的并行度变大,再汇集。其实办法一样。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1430955.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CTF(5)

一、[SWPUCTF 2021 新生赛]ez_caesar 1、题目 import base64 def caesar(plaintext):str_list list(plaintext)i 0while i < len(plaintext):if not str_list[i].isalpha():str_list[i] str_list[i]else:a "A" if str_list[i].isupper() else "a"…

vulhub中Adminer远程文件读取漏洞复现(CVE-2021-43008)

Adminer是一个PHP编写的开源数据库管理工具&#xff0c;支持MySQL、MariaDB、PostgreSQL、SQLite、MS SQL、Oracle、Elasticsearch、MongoDB等数据库。 在其版本1.12.0到4.6.2之间存在一处因为MySQL LOAD DATA LOCAL导致的文件读取漏洞。 参考链接&#xff1a; https://gith…

端到端实现高精地图重建(TopoNet解读和横评)

论文出处 [2304.05277] Graph-based Topology Reasoning for Driving Scenes (arxiv.org)https://arxiv.org/abs/2304.05277 TopoNet TopoNet的目标是从车辆上安装的多视角摄像头获取图像&#xff0c;感知实体并推理出驾驶场景的拓扑关系&#xff0c;实现端到端预测&#xf…

2017年苏州大学837复试机试C/C++

2017年苏州大学复试机试 要求 要求用C/C编程&#xff1b;对程序中必要的地方进行注释。上机规则 请在电脑桌面上新建一个文件夹文件夹名为考试姓名&#xff08;中文&#xff09;&#xff1b;考试完毕后&#xff0c;将所编写的文件放在上述文件中。 第一题&#xff08;20分&…

Node.js-1

Node.js 简介 定义&#xff1a;Node.js 是一个跨平台 JavaScript 运行环境&#xff0c;使开发者可以搭建服务器端的 JavaScript 应用程序 为什么 Node.js 能执行 JS 代码&#xff1a; Chrome 浏览器能执行 JS 代码&#xff0c;依靠的是内核中的 V8引擎&#xff08;即&#x…

react 使用react-seamless-scroll实现无缝滚动

文章目录 1. 实现无缝滚动效果2. react-seamless-scroll 无缝滚动案例介绍3. react 项目集成3.1 项目引入 cssSeamlessScroll 滚动组件3.2 完整代码3.2.1 newBet.tsx 代码3.2.2 index.module.scss 1. 实现无缝滚动效果 实现单步向下滚动点击更多展开&#xff0c;收起&#xff0…

[Angular 基础] - Angular 渲染过程 组件的创建

[Angular 基础] - Angular 渲染过程 & 组件的创建 之前的笔记为了推进度写的太笼统了&#xff08;只有功能没有其他&#xff09;&#xff0c;当时学的时候知道是什么东西&#xff0c;但是学完后重新复习发现有些内容就记不清了&#xff0c;所以重新用自己的语言总结一下 …

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)--强化学习、模仿学习、机器人

专属领域论文订阅 关注{晓理紫}&#xff0c;每日更新论文&#xff0c;如感兴趣&#xff0c;请转发给有需要的同学&#xff0c;谢谢支持 如果你感觉对你有所帮助&#xff0c;请关注我&#xff0c;每日准时为你推送最新论文。 为了答谢各位网友的支持&#xff0c;从今日起免费为3…

基于YOLOv8算法的照片角度分类项目实践

目录 一、任务概述二、YOLOv8算法简介2.1 算法改进2.2 算法特点2.3 网络结构2.4 性能比较 三、工程实践3.1 安装算法框架库ultralytics3.2 库存照片预处理3.2.1 提取所有图片3.2.2 去除冗余的相同照片3.2.3 去除无车辆照片3.2.4 随机提取指定数量的图片 3.3 照片朝向分类3.3.1 …

项目02《游戏-06-开发》Unity3D

基于 项目02《游戏-05-开发》Unity3D &#xff0c; 接下来做 背包系统的 存储框架 &#xff0c; 首先了解静态数据 与 动态数据&#xff0c;静态代表不变的数据&#xff0c;比如下图武器Icon&#xff0c; 其中&#xff0c;武器的名称&#xff0c;描述&#xff…

宠物空气净化器哪个牌子好?除猫毛好的猫用空气净化器牌子推荐

大家都知道&#xff0c;宠物掉毛的情况有多么严重。特别是在换毛的季节&#xff0c;简直就是毛发遍地飞。这给家里有小孩和老人的人带来了很多困扰&#xff0c;他们可能会流鼻涕、过敏等等。而且&#xff0c;宠物有时候也会随地大小便&#xff0c;那个味道真的很难闻。家里的人…

【揭秘】JMeter JDBC脚本实战,让你的性能测试更高效!

Jmeter使用jdbc的场景&#xff1a; 1、接口功能测试时&#xff0c;需要查询验证码 2、通过数据库查询已经注册的手机号码 3、性能测试时&#xff0c;直接对某个SQL做性能测试&#xff0c;快速的发现性能问题 添加一个jdbc的配置元件 配置jdbc连接信息 配置说明&#xff1a; 1…

如何看待敏捷

局部清晰&#xff0c;循序渐进&#xff0c;整体清晰增量型 考试要么预测&#xff08;传统&#xff0c;瀑布&#xff09;&#xff0c;要么敏捷&#xff0c;要么就用混合方法 项目生命周期两种&#xff1a;预测型、敏捷型 开发生命周期四种&#xff1a;预测型、迭代型、增量型、…

JVM工作原理与实战(三十四):解决GC问题的方法

专栏导航 JVM工作原理与实战 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、常见的垃圾回收&#xff08;GC&#xff09;模式 二、解决GC问题的方法 1.优化基础JVM参数 2.更换垃圾回收器 3.优化垃圾回收器的参数 总结 前言 JVM作为Java程序的运行环境&a…

龙龙送外卖pta[代码+讲解]

题目 题解 代码 题目 龙龙是“饱了呀”外卖软件的注册骑手&#xff0c;负责送帕特小区的外卖。帕特小区的构造非常特别&#xff0c;都是双向道路且没有构成环 —— 你可以简单地认为小区的路构成了一棵树&#xff0c;根结点是外卖站&#xff0c;树上的结点就是要送餐的地址…

钓鱼攻击:深度解析与防范策略

一、引言 在当今的网络世界中&#xff0c;钓鱼攻击已经成为一种日益猖獗的威胁。这种攻击方式利用电子邮件、社交媒体或其他在线平台&#xff0c;伪装成可信赖的来源&#xff0c;诱导受害者点击恶意链接或下载恶意附件&#xff0c;进而窃取个人信息或实施其他恶意行为。本文将…

关于Clone

关于Clone 一般情况下&#xff0c;如果使用clone()方法&#xff0c;则需满足以下条件。 1、对任何对象o&#xff0c;都有o.clone() ! o。换言之&#xff0c;克隆对象与原型对象不是同一个对象。 2、对任何对象o&#xff0c;都有o.clone().getClass() o.getClass()。换言之&a…

VC++中使用OpenCV绘制直线、矩形、圆和文字

VC中使用OpenCV绘制直线、矩形、圆和文字 在VC中使用OpenCV绘制直线、矩形、圆和文字非常简单&#xff0c;分别使用OpenCV中的line、rectangle、circle、putText这四个函数即可。具体可以参考OpenCV官方文档&#xff1a;https://docs.opencv.org/4.x/index.html 下面的代码展…

9、C语言复习

目录 1、位操作 2、define宏定义关键词 3、ifdef条件编译 4、extern变量申明 5、typedef类别别名 6、结构体 7、static关键字 1、位操作 &&#xff1a;按位与 |&#xff1a;按位或 ^&#xff1a;按位异或 ~&#xff1a;取反 <<&#xff1a;左移 >>…

JAVA Web 学习(四)RabbitMQ、Zookeeper

十、消息队列服务器——RabbitMQ RabbitMQ是使用Erlang语言开发的开源消息队列系统&#xff0c;基于AMQP协议来实现。AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、 安全。AMQP协议更多用在企业系统内&#xff0c;对数据一致性、稳定性和可靠性要求…