【文本到上下文 #8】NLP中的变形金刚:解码游戏规则改变者

news2024/12/22 11:06:14

一、说明

   欢迎来到我们对不断发展的自然语言处理 (NLP) 领域的探索的第 8 章。在本期中,我们将重点介绍一项重塑 NLP 格局的突破性创新:Transformers。在我们之前对 seq2seq 模型、编码器-解码器框架和注意力机制的讨论之后,我们现在开始了解 Transformer 如何彻底改变语言任务的方法。

   以下是本章的内容:

  1. 变压器模型的出现:了解 Transformer 的起源,以及它们如何标志着 LSTM 和 GRU 等传统递归神经网络模型的重大转变。
  2. 了解 Transformer 架构: 深入了解 Transformer 的复杂架构,探索其独特的组件,例如编码器-解码器模块、自注意力机制、位置编码、前馈网络、层归一化和残差连接。
  3. 与传统模型(LSTM、GRU、seq2seq)的比较:深入了解 Transformer 在处理效率和处理复杂语言任务方面有何不同并超越传统模型。
  4. 变压器的实际应用和影响: 探索这些模型在各种 NLP 应用(如机器翻译、文本摘要、问答系统和情感分析)中的变革性影响。
       加入我们,我们将揭示 Transformer 模型的复杂性和功能,提供理论见解和实际应用的融合

二、变压器模型的出现

   Vaswani 等人在 2017 年的关键论文“Attention is All You Need”中介绍了 Transformer 模型,它标志着与以前占主导地位的基于递归神经网络的模型(如 LSTM(长短期记忆)和 GRU(门控循环单元))的背离。这些模型是许多 NLP 应用程序的支柱,但具有固有的局限性,特别是在处理长序列和并行处理数据方面。

   变压器的出现是为了解决这些限制。它们的架构与它们的前辈有着根本的不同,允许并行处理整个数据序列。这种转变不仅提高了处理效率,而且为处理大规模语言数据开辟了新的途径,这在涉及理解文本中的上下文和关系的任务中尤为关键。

三、了解 Transformer 架构

在这里插入图片描述

   变形金刚的结构既复杂又巧妙。它由几个组件组成,这些组件协同工作以有效地处理语言数据:

  •    编码器和解码器模块
    变压器由多个相互堆叠的编码器和解码器块组成。这种结构与传统的 seq2seq 模型有很大不同,后者通常具有单个编码器和单个解码器。

  •    自注意力机制
    变形金刚的核心创新是自注意力机制。这允许编码器中的每个位置都处理编码器上一层中的所有位置。同样,解码器中的每个位置都可以处理解码器中直到该位置的所有位置以及编码器中的所有位置。这种机制允许模型权衡输入数据不同部分的重要性,从而能够对数据中的上下文和关系进行细致入微的理解。

  •    位置编码
    由于 Transformer 不按顺序处理数据,因此它们缺少有关序列中单词顺序的信息。位置编码被添加到输入嵌入中以提供此位置信息,使模型能够理解单词的序列。

  •    前馈神经网络
    每个编码器和解码器模块都包含一个完全连接的前馈网络。该网络处理注意力层的输出,每层都有自己的参数。

  •    层归一化和残余连接
    这些元素对于稳定和加速 Transformer 模型的训练至关重要。层归一化有助于在将每个子层的输出传递到下一层之前对其进行归一化,残差连接有助于避免训练期间的梯度消失问题。

四、与传统模型(LSTM、GRU、seq2seq)的比较

   Transformers 与 LSTM、GRU 和 seq2seq 模型等传统模型之间的一个关键比较在于它们处理数据的方法。LSTM 和 GRU 模型擅长从序列中捕获信息,但要按顺序捕获信息。这种顺序处理意味着这些模型可能会与文本中的长期依赖关系作斗争,因为信息必须通过序列中的每个步骤。

   Seq2seq 模型通常用于机器翻译和其他类似任务,通常由编码器和解码器组成。虽然有效,但它们也按顺序处理信息,并且可能会遇到文本中的长序列和复杂关系。

   Transformer 通过并行处理整个数据序列来克服这些挑战。这种并行处理能力显著提高了模型的效率及其处理复杂语言任务的能力。变形金刚中的自我注意力机制可以更细致地理解文本中的上下文和关系,这在语言翻译、摘要和问答系统等任务中特别有价值。

五、变压器的实际应用和影响

   Transformer 模型的引入对各种 NLP 任务产生了重大影响。它们能够有效地处理和理解复杂的语言数据,从而在各种应用程序中带来了实质性的改进,包括但不限于:

   机器翻译:Transformers 在机器翻译方面取得了最先进的成果,比以前的模型更有效地处理多种语言和复杂的句子结构。
   文本摘要:他们理解文本中的上下文和关系的能力使 Transformers 在准确总结长文档方面特别有效。
   问答系统:Transformer 提高了系统理解和响应自然语言查询的能力,使其更加准确和高效。
   情感分析:它们增强了理解语言细微差别的能力,从而在文本中进行更准确的情感分析。

六、结论

   在这篇博客中,我们探讨了 Transformer 模型在 NLP 中的变革性影响。这些模型代表了从顺序处理到并行处理语言数据的范式转变,能够更高效地处理复杂任务。

   随着我们在本系列中的推进,下一章将重点关注“BERT 和迁移学习”。我们将深入探讨来自转换器的双向编码器表示 (BERT) 模型如何彻底改变 NLP 中的迁移学习。我们将探讨针对特定任务微调 BERT 的概念及其在各种 NLP 挑战中的影响。这将为我们最终讨论大型语言模型 (LLM) 奠定基础,包括 GPT 变体,以及它们在塑造 NLP 未来中的作用。请继续关注 Transformer 的高级应用及其在语言处理领域的变革力量的深刻旅程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1429189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenCV+ moviepy + tkinter 视频车道线智能识别项目源码

项目完整源代码,使用 OpenCV 的Hough 直线检测算法,提取出道路车道线并绘制出来。通过tkinter 提供GUI界面展示效果。 1、导入相关模块 import matplotlib.pyplot as plt import numpy as np import cv2 import os import matplotlib.image as mpimg …

第三篇:跨平台QT开发-元对象系统

元对象系统 元对象系统是一个基于 标准 C的扩展 ,为 Qt 提供了信号与槽机制、实时类型信息,动态属性系统 元对象系统的三个基本条件:类必须继承自 QObject、类声明 Q_OBJECT 宏(默认私有 有)、元对象编译器 moc。 class ExamDia…

Golang `crypto/hmac` 实战指南:代码示例与最佳实践

Golang crypto/hmac 实战指南:代码示例与最佳实践 引言HMAC 的基础知识1. HMAC 的工作原理2. HMAC 的应用场景 Golang crypto/hmac 库概览1. 导入和基本用法2. HMAC 的生成和验证3. crypto/hmac 的特性 实战代码示例示例 1: 基本的 HMAC 生成示例 2: 验证消息完整性…

[.NET] 查询当前已安装所有 Win32 与 UWP 应用

为了获取当前设备用户已安装的所有应用程序, 一般来讲有两种方案. 一种是通过查询 “shell:AppsFolder” 目录下所有项, 一种是从开始菜单中获取所有快捷方式, 然后加上查询所有已安装的 UWP 应用, 最后得到总列表. 如需代码参考, 请看 github.com/SlimeNull/WindowsAppsQuery …

拥抱个人成长与社会进步:自我认知与开放心态的相互影响

拥抱个人成长与社会进步:自我认知与开放心态的相互影响 Embracing Personal Growth and Societal Progress: The Interplay of Self-Awareness and Open-mindedness 一、引言 I. Introduction 在当今急速发展的时代,个人成长与社会进步交织在一起&…

必收藏面试题:什么是SQL注入?以及Mybatis中#号和$号之间的区别?

本文大纲: 先分析什么是SQL注入漏洞?再分析#{}和${}之间的区别再基于MybatisPlus做验证再介绍#{}和${}的使用场景 什么是SQL注入? 先看两段代码,假如id的值为字符串"100",大家可以顺便想想每段代码最后拼…

玩美移动为花西子海外官网打造AR虚拟试妆决方案

全球领先的增强现实(AR)及人工智能(AI)美妆科技领导者及玩美系列APP开发商——玩美移动(纽交所代码:PERF)于近日宣布携手知名美妆品牌花西子,在其线海外官方网页提供多项彩妆虚拟试妆…

链表——C语言——day17

链表 链表是一种常见的重要的数据结构。它是动态地进行存储分配的一种结构。在用数组存放数据时,必须事先定义固定的长度(即元素个数)。链表则没有这种缺点,它根据需要开辟内存单元。 链表有一个“头指针“变量,图中…

电脑怎么录屏?打造专业级视频内容!

随着科技的进步,电脑已经深入到我们的日常生活和工作中。而在这个数字时代,录制屏幕内容变得日益重要。无论是制作教程、分享游戏技巧,还是记录重要的演示,录屏都是一个不可或缺的功能。可是电脑怎么录屏呢?本文将深入…

ESU毅速丨3D打印随形水路在模具制造中应用越来越多

在模具制造领域,冷却水路的设计和制造至关重要,它直接影响到产品的质量和生产效率。3D打印随形水路在设计和制造上相比传统模具水路有哪些优势,为什么越来越受到企业追捧? 传统模具水路通常是直线或规则形状的通道,设计…

高宇辰:打造“π”型人才 | 提升之路系列(七)

导读 为了发挥清华大学多学科优势,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才,由清华大学研究生院、清华大学大数据研究中心及相关院系共同设计组织的“清华大学大数据能力提升项…

ADAS感知摄像头的分辨率与帧率选择分析

说明:可以作为对智能驾驶爱好者对摄像头参数理解或者从业工程人员对设计硬件选型参考 前言 在当前智能驾驶中,基于摄像头的 ADAS 因其应用、更高的可靠性和对新要求的适应性而被广泛采用。 ADAS 摄像头通常部署在汽车的前部、侧面和后部,提…

计算视图里的projection和aggregation节点区别

Projection 和 Aggregation到底有什么区别? 看名字就能看出来的。 那么在什么场景下用呢? 1. Projection就是投影,也就是说你本来的源里有什么,就直接给你拿出来。 除了这个,它使用的场景就是: 只映射需…

基于JAVA+SpringBoot+Vue的前后端分离的仓库管理系统(进销存)系统

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 随着全球经济的不断发…

linux 下mongodb7版本怎么连?

概述:linux下的mongodb7版本默认是没有安装客户端的,需要下载shell客户端才能连,下载之后解压,不需要编译,进入bin目录就能自己运行,。 安装: linux 下mongodb7版本没有安装客户端需要当地下载…

vscode实时预览markdown效果

安装插件 Markdown Preview Enhanced 上面是搜索框 启动预览 右键->Open Preview On the Side 效果如下: 目录功能 目录功能还是使用gitee吧 push后使用gitee,gitee上markdown支持侧边生成目录

数据结构篇-05:哈希表解决字母异位词分组

本文对应力扣高频100 ——49、字母异位词分组 哈希表最大的特点就是它可以把搜索元素的时间复杂度降到O(1)。这一题就是要我们找到 “字母异位词” 并把它们放在一起。 “字母异位词”就是同一个单词中字母的不同组合形式。判断“字母异位词”有两个视角:1、所含字…

UE4 C++ 静态加载类和资源

静态加载类和资源:指在编译时加载,并且只能在构造函数中编写代码 .h //增加所需组件的头文件 #include "Components/SceneComponent.h" //场景组件 #include "Components/StaticMeshComponent.h" //静态网格体组件 #include &qu…

XXE基础知识整理(附加xml基础整理)

全称:XML External Entity 外部实体注入攻击 原理 利用xml进行读取数据时过滤不严导致嵌入了恶意的xml代码;和xss一样 危害 外界攻击者可读取商户服务器上的任意文件; 执行系统命令; 探测内网端口; 攻击内网网站。 商…

arcgis javascript api4.x加载非公开或者私有的arcgis地图服务

需求: 加载arcgis没有公开或者私有的地图服务,同时还想实现加载时不弹出登录窗口 提示:​ 下述是针对独立的arcgis server,没有portal的应用场景; 如果有portal可以参考链接:https://mp.weixin.qq.com/s/W…