Linux:进程信号的概念与产生原理

news2024/11/26 16:40:06

文章目录

  • 信号的概念
  • 实践信号
    • 关于前台和后台进程的操作
  • 操作系统与外设
  • 信号的产生
  • signal系统调用

前面的篇章结束了信号量的话题,那么接下来引入的是信号的话题,信号和信号量之间没有任何关系,只是名字比较像

信号的概念

在生活中存在各种各样的信号,例如有红绿灯这样的存在,而进程信号和生活中的信号其实是比较像的,为什么有红灯停绿灯行这样的概念,其实就是因为作为人从小就被指导有这样的观念,因此对应到进程信号中,有下面的几个结论:

  1. 当信号还没有产生的时候,其实进程就已经知道如何应对这个信号了,这是操作系统在设计的时候就已经被设计好的理念,所以在内核中存在这样的设计:

在这里插入图片描述

上述的这些信号就是在操作系统内部已经设计好的内容,当某个进程得到了这样某种信号,就会对对应的信号做出反应,就如同当人遇到绿灯会行驶,遇到红灯会停止一样的道理

  1. 信号的到来,进程并不清楚具体什么时候来,信号的到来和当前进程的逻辑是异步产生的
  2. 信号产生后,进程并不一定要立即处理它,而是在一个合适的时机进行处理,这也就意味着进程必须要对于即将来临的信号有一定的存储能力,以便于在外来需要对该信号处理的时候可以找到这个信号并进行处理

异步的概念

在第二条结论中提及到了异步的概念,因此这里对于异步进行一些解释

同步和异步是一组概念,同步概念的引出是在管道中引出的,管道的执行逻辑是具有一定的顺序性,产生顺序性的本质是让两个进程相互知道彼此的两个进程,感受到对应进程的存在,这也就是为什么管道在写端写满后,如果读端不读,写端就不会写的原因,这就是因为两个进程之间建立了一定的相关性,两个进程之间是会相互影响的,而对于异步来说,就是同步的相反点,当进程a向某个位置输出信息时,进程a没有因为其他外界的原因导致停止对于某个位置信息的输出,而是在一直输出,那么这个过程就称作是异步

信号的本质是一种向目标进程发送通知消息的一种机制

实践信号

#include <iostream>
#include <unistd.h>
using namespace std;

int main()
{
    while (true)
    {
        cout << "it is a process, pid:" << getpid() << endl;
        sleep(1);
    }
    return 0;
}

运行上述结果

在这里插入图片描述

此时会发现的现象是,运行的任何命令都没有效果,此时运行kill命令就可以对其进行终止了:

在这里插入图片描述
此时进程终止,并且以前的命令也都显示出来了

下面对上述的现象做出解释

进程在运行的过程中,通常有两种模式,一种是前台模式,运行方式是

./process

一种是后台模式,运行方式是

./process &

这是对于一个进程的两种运行方式,其中后台程序一般是执行一些耗时比较长的任务,就可以使用后台进行启动,并且不会占用前台的操作

对于Linux系统来说,前台程序执行后再进行输入命令就无效了,为什么?因为shell本身也是一个进程,如果把一个进程放到了前台,那么就相当于把shell放到了后台,shell放到了后台,自然就不能对用户的命令进行解释了,因此区分一个进程是用前台启动的还是后台启动的,就看能不能从键盘上接受用户的输入,这也是最直接的方法

关于前台和后台进程的操作

[test@VM-16-11-centos signal]$ ./process >> log1.txt &
[1] 11861
[test@VM-16-11-centos signal]$ ll
total 24
-rw-rw-r-- 1 test test  351 Jan 30 16:13 log1.txt
-rw-rw-r-- 1 test test   79 Jan 30 12:58 Makefile
-rwxrwxr-x 1 test test 9176 Jan 30 12:58 process
-rw-rw-r-- 1 test test  198 Jan 30 12:55 Process.cc
[test@VM-16-11-centos signal]$ jobs
[1]+  Running                 ./process >> log1.txt &
[test@VM-16-11-centos signal]$ fg 1
./process >> log1.txt
ll
pwd
^Z
[1]+  Stopped                 ./process >> log1.txt
[test@VM-16-11-centos signal]$ bg 1
[1]+ ./process >> log1.txt &
[test@VM-16-11-centos signal]$ jobs
[1]+  Running                 ./process >> log1.txt &

在这里插入图片描述

将一个进程从后台提到前台

fg number

将一个进程从前台放到后台,自动沉睡

ctrl+z

将一个后台程序唤醒

bg number

查看当前运行的后台进程

jobs

操作系统与外设

如果谈到进程信号,就需要引入中断的概念,但是对于中断的概念来说,更需要提及的是这样的问题

操作系统是硬件的管理者,所以硬件上的变化操作系统应该知道并且接收,例如鼠标点击了哪里,键盘按下了哪个键,这些操作系统都要知道,只有知道了键盘按下的数据,才能根据冯诺依曼体系,利用键盘驱动把键盘上的数据拷贝到操作系统中对应键盘的文件缓冲区中,上层就可以通过文件描述符把对应的数据读取上来,所以scanf就能读取到对应的数据了

问题是:操作系统怎么知道键盘被按下了?

由冯诺依曼体系可以知道,计算机结构中有输入单元,也有输出单元,有内存CPU外设这些信息,那么操作系统是如何知道外设中的数据就绪了呢?难道是让操作系统隔一段时间就去检测一下外设中的输入信息吗?结合实际生活的经验以及操作系统对于效率的控制就能知道,这是绝对不可能的,所以一定是让硬件来告诉操作系统

操作系统最初在进行设定的时候,就要求CPU和外设要取得同步,能够让CPU知道关于外设上的各种信息,所以引入了一门新的技术叫做中断技术,关于中断技术,就要先清楚CPU本身的结构,CPU内部有运算器做数据处理,也有控制器进行设备的控制,那么也就意味着CPU必定要和设备直接或间接的相连,所以CPU就会提供一个一个的针脚,这个针脚是有编号的,针脚会与电脑中的主板相连,而主板上的硬件电路是和外设相连,所以在冯诺依曼体系中,CPU之和内存进行数据交互,就是因为外设太慢了,但是实际上CPU一定是会和外设有关联的,只不过不是进行直接的数据交互,那在计算机中,主板就担任了关联的角色,在主板上有各种各样的硬件电路,这些硬件电路就和CPU上的针脚相连,换句话说,当电脑上插入一个新的外设设备后,实际上就和电脑连接完毕了,此时键盘上发送的消息,CPU就能知道,发送的信息就叫做中断信息

对于中断信息这个概念来说,中断体现在把光电信号就叫做中断,换句话说,对应在电脑中的每一个外设与CPU本身都可以进行高低电平的信息交互,外设和CPU硬件是可以间接相连的,未来也能够进行数据的拷贝,不光如此,键盘在触发的时候会产生出很多的光电信号,这些光电信号的强弱就会被CPU识别到,CPU中的各种各样的寄存器就能对这些光电信号进行识别,识别的结果其实就是说某一种数据被放到了计算机中,这样就被操作系统读取到了,这样也就把硬件的行为信息转换成了软件的信息

经过上面的这一系列过程,就把数据从硬件转换到软件了,软硬件结合的本质就是通过寄存器或者内存中的数据来进行软硬件的数据结合

关于8259板

电脑上可以插入很多的电子设备,可能是键盘网卡这样对于操作系统来说有用的硬件设备,也可能是一个普通的风扇这样,仅仅是需要供电的设备,那么操作系统对于每个这样的设备都要进行链接吗?答案是否定的,在CPU和硬件之间会有一个电路板,叫做8259板,和电脑相连的所有设备,都会通过这个电路板再传递给CPU,而这个电路板的作用就是可以把有效的信息进行转换,传递给CPU中

所以得出的一个结论是,外设可以间接的向CPU特定的针脚中发送信息,表示自己的数据已经就绪了,而CPU中每一个针脚都会有一个对应的编号,这个编号就叫做中断号,因此在计算机中,每一个设备都会分配不同的中断号,当这个设备发生中断后,就能识别到这个设备的信息已经就绪了,那CPU就能通过这些信息拿到键盘上对应的中断号,拿到中断号之后,为了能够更快的对这些外设做出响应,在操作系统的内部会提供一张表,这个表中是一个函数指针数组,存储的是一个一个的指针,而这些指针指向的内容就是特定硬件的读取方法,当外设启动的时候,就会通过这张表形成对应硬件就绪后的读取方法,当中断号传递来之后,就借助这个数组索引到需要的内容,进而读取到这个设备想要传递来的数据信息。这张表叫做中断向量表,这张表在操作系统启动的时候,就要创建出的一张表。这样就保持了操作系统高效的特点,同时也能读取到各个设备上的消息

当用户摁键盘的时候,键盘就会基于中断来进行驱动,所以就会通过硬件告知CPU,进而通过操作系统把中断号提取出来,再从中断向量表中找到对应的方法,进而就能完成执行的操作

谈了这么多问题,其实就是想引出关于中断的概念,而键盘的行为和操作系统的行为其实和信号十分类似,它们都遵循异步的逻辑,键盘怎么摁,操作系统不会专门去等着它,而是在摁完之后操作系统会在合适的时候对这个行为做出响应,那信号是不是也是类似呢?一个信号传递给进程,进程可能并不会立即做出响应,它会在完成了当前最重要的任务后,再对这个信号做出反应,这其实就是一个异步的逻辑原理,那信号中的这些各种各样的信号,是不是就如同对应的中断号,而中断向量表,不就是和kill列表中的各种信号是一样的吗?

因此得出的结论是,信号本身就是用软件来模拟中断的行为,只不过这两个操作在设计上是两套机制,一个是纯硬件,一个是软件上的操作,但是在响应和异步的方面,它们之间是有很多的相似处的

信号的产生

Ctrl+c的命令可以让前台的进程终止,那为什么呢?借助信号来解决这个问题

键盘中的数据是有很多种的,其中一种是1234这样的普通数据,一种是例如Ctrl+c这样的组合键,这样的数据被叫做是控制数据,它传递的是一种控制的思想观念,操作系统如果收到了普通数据,就把数据传递给用户进程,如果是组合键,就把这个数据转换成一种动作

因此从头理思路,在键盘上按下了Ctrl+c后,此时光电信号会由键盘控制器解析成中断信号,中断信号再传递到8259板进行解析,8259板再传递到对应的CPU上的针脚,CPU的针脚再进行解析,最终读取到数据,就会向进程发送2号信号,最终使得进程结束

所以,引出的结论是,Ctrl+c命令本质上就是一种组合键,它要传递的控制数据就是向进程发送2号信号,也就是说kill -2和Ctrl+c是等价的,具体可以通过看返回上一个命令的状态来看

signal系统调用

这里介绍一个系统调用:

#include <signal.h>
typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

该函数最终形成的效果是,如果有一个信号被发送,那么此时就会被替换为自定义的函数行为,因此这个函数的第二个参数实际上是一个函数指针

#include <iostream>
#include <unistd.h>
#include <signal.h>
using namespace std;

void handler(int singno)
{
    cout << "这是" << singno << "号信号" << endl;
    exit(1);
}

int main()
{
    signal(2, handler);
    signal(3, handler);

    while(true)
    {
        cout << "我的进程pid是" << getpid() << endl;
        sleep(1);
    }
    return 0;
}

在这里插入图片描述
从这个程序运行结果可以看出,Ctrl+C确实是传递的2号信号

在系统中信号主要分为有普通信号,下标从1到31,也有实时信号,那么这里只进行普通信号的研究

对于普通信号来说,它是没有0号信号的,为什么呢?

在进程等待的学习中就有这样的概念,一个进程的退出有两种信息,一个是退出时收到的信号编号,一个是退出时收到的退出码,所以对于进程退出来说是有两个数字可以参考的,退出信号和退出码,也是根据这两个数字来判断进程的健康状态的,加入进程的退出信号是零,表示的是这个进程在运行期间没有收到任何信号,它是很正常的跑完的,至于结果是否正确,则是可以根据进程的退出码来表示它到底退出的是否正确,由此可以看出,退出信号不应该有0号新号,如果有0号信号,那还能表示没有收到任何信号吗?因此在设计的时候大概率就没有进行对应的设计,就是为了更好的识别进程的正常退出这样的情况

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1426129.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux麒麟系统安装mongodb7.0

1.mogedb下载 下载的是他tar包 https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel80-7.0.5.tgz wget -o https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel80-7.0.5.tgz 也可以下载rpm包 2.将包上传至服务器并解压 #进入目录 并解压 cd /opt/ tar…

Linux ---- Shell编程之免交互

一、Here Document 多行重定向 1、Here Document定义 使用I/O重定向的方式将命令列表提供给交互式程序标准输入的一种替代品Here Document 是标准输 入的一种替代品&#xff0c;可以帮助脚本开发人员不必使用临时文件来构建输入信息&#xff0c;而是直接就地生产出一个文件…

技术科普 | 机器视觉5大关键技术及其常见应用

计算机视觉是指&#xff1a;让机器通过数字图像或视频等视觉信息来模拟人类视觉的过程&#xff0c;以达到对物体的理解、识别、分类、跟踪、重建等目的的技术。它是人工智能领域中的一个分支&#xff0c;涉及图像处理、模式识别、机器学习、深度学习等多个领域。 随着人工智能和…

7.2、子集求和问题与背包密码系统

7.2、子集求和问题与背包密码系统 一、数学描述 1.1、第一种描述 20 世纪 70 年代末&#xff0c;默克尔和赫尔曼首次尝试将密码系统建立在一个 NP-完全问题上。他们使用了以下数学问题的一个版本&#xff0c;该问题是对经典knapsack问题的概括。 子集和问题 假设你有一个正…

数据结构——链式二叉树(3)

本篇文章我们依然讲解链式二叉树的OJ题&#xff1b; 一、二叉树的层序遍历 层序遍历即从根节点开始一层一层的遍历。我们可以运用队列的先进先出特性实现&#xff01; //层序遍历 void a(BTNode* root) {Que qhead;Queueinit(&qhead);//先入队根节点if(root)QueuePush(&…

C#,计算几何,随机点集之三角剖分的德劳内(Delaunay)算法的源代码

一、三角剖分Delaunay算法简介 点集的三角剖分&#xff08;Triangulation&#xff09;&#xff0c;对数值分析&#xff08;比如有限元分析&#xff09;以及图形学来说&#xff0c;都是极为重要的一项预处理技术。尤其是Delaunay三角剖分&#xff0c;由于其独特性&#xff0c;关…

LeetCode: 160.相交链表(令人赞叹的优雅)

160. 相交链表 - 力扣&#xff08;LeetCode&#xff09; 目录 官方双指针解法&#xff1a; 博主的辣眼代码&#xff1a; 每日一表情包&#xff1a; 博主还未学习哈希表&#xff0c;所以介绍的是双指针法&#xff0c;此题的哈希表解法时O&#xff08;nm&#xff09;空O&…

MySQL窗口函数--lead()函数

lead()函数&#xff1a; 查询当前行向下偏移n行对应的结果 该函数有三个参数&#xff1a;第一个为待查询的参数列名&#xff0c;第二个为向下偏移的位数&#xff0c;第三个参数为超出最下面边界的默认值。 如下代码&#xff1a; 查询向下偏移 2 位的年龄 SELECT user_id,user…

JavaScript高级:深浅拷贝

目录 1 引言 2 浅拷贝 2.1 拷贝数组 1.2 拷贝对象 3 赋值操作和浅拷贝的比较 4 深拷贝 4.1 前置知识 --> 递归函数 4.2 使用递归实现深拷贝 4.3 js库中的lodash里面的cloneDeep内部实现深拷贝 4.4 利用JSON实现深拷贝 深浅拷贝只针对引用数据类型 1 引言 假如我们…

leetcode 19 , 118

19 .删除链表倒数第n个节点 思路1&#xff1a; 我首先想到的就是使用两个loop来进行解决&#xff1a; 遍历所有节点&#xff0c;得到需要删除节点的位置。再遍历一边所有节点&#xff0c;找到需要删除节点进行删除。 解决方案1&#xff1a; class Solution {public ListNod…

DevOps落地笔记-07|案例分析:如何有效管理第三方组件

上一讲主要介绍了如何通过代码预检查的方式提高入库代码的质量&#xff0c;将代码检查尽可能前置&#xff0c;降低修复问题的成本&#xff0c;从而提高交付软件的质量。除了代码本身的问题&#xff0c;依赖组件也是经常困扰开发者的一个问题。比如&#xff0c;依赖组件的某个版…

项目管理构建不只是Maven,还有更优越的它!

教程全文阅读请转至《项目管理构建不只是Maven,还有更优越的它&#xff01;》 Gradle简介 Gradle是一种现代化的构建工具&#xff0c;用于构建Java、C、Python、Android等项目。它是一种基于Groovy语言的自动化构建工具&#xff0c;可以自动化执行各种构建任务&#xff0c;例…

matlab基本操作

目录 1 清空workspace 2 清空命令行窗口 3 求字符的ASCII码 4 矩阵的表示 5 矩阵的转置 6 按列输出 7 求逆矩阵 8 创建零矩阵 9 生成随机数 10 生成空数组 11 生成单位矩阵 12 生成幻方矩阵 13 结构体 14 重复 15 点乘与叉乘 16 寻找符合条件的元素…

2024年1月份实时获取地图边界数据方法,省市区县街道多级联动【附实时geoJson数据下载】

首先&#xff0c;来看下效果图 在线体验地址&#xff1a;https://geojson.hxkj.vip&#xff0c;并提供实时geoJson数据文件下载 可下载的数据包含省级geojson行政边界数据、市级geojson行政边界数据、区/县级geojson行政边界数据、省市区县街道行政编码四级联动数据&#xff0…

spring cache的使用(Redis)

要在Spring Boot应用中使用Redis作为缓存&#xff0c;你需要遵循一些步骤来配置和使用Redis。以下是使用Spring Cache抽象与Redis进行整合的详细说明&#xff1a; 1. 添加依赖 首先&#xff0c;需要在pom.xml中添加Spring Boot的Redis starter依赖以及缓存的starter依赖。这会…

vivado 与系统设计师接口

与系统设计师接口 作为迭代I/O和时钟规划过程的一部分&#xff0c;您可以交换有关AMD设备通过导出CSV文件和IBIS模型&#xff0c;与PCB或系统设计者进行引脚连接。根据PCB或设计规范的变化&#xff0c;您可能需要将引脚重新导入为如定义和配置I/O端口中所述。完成I/O和时钟中的…

如何在 Mac 中运行 Office 办公软件

虽然 Office 软件也有 Mac 版本的&#xff0c;但是有蛮多小伙伴用起来还是感觉不得劲&#xff0c;毕竟接触了太久的 Windows&#xff0c;所以想要使用 Windows 版本的 Office 软件。 今天就给大家介绍一下怎么在 Mac 电脑中运行 Windows 版本的办公软件&#xff0c;在这里就需…

【Qt】—— Qt Creator 创建项目

目录 &#xff08;一&#xff09;Qt Creator概览 &#xff08;二&#xff09;使⽤Qt Creator新建项⽬ &#xff08;一&#xff09;Qt Creator概览 从开始菜单或者快捷⽅式打开Qt Creator集成开发环境&#xff0c;启动之后看到类似下⾯的界⾯&#xff1a; 【解释说明】 菜单栏…

0101appscan安装与使用入门-扫描-信息收集

1 简介 HCL AppScan&#xff08;原IBM Security AppScan&#xff09;是原IBM的Rational软件部门的一组网络安全测试和监控工具&#xff0c;2019年被HCL技术公司收购。AppScan旨在在开发过程中对Web应用程序的安全漏洞进行测试[1]。该产品学习每个应用程序的行为&#xff0c;无…

杂题——试题-算法训练-P0604-runaround数

分析&#xff1a; 题目有三个关键点&#xff1a; 一&#xff1a;结束时&#xff0c;回到起始位置&#xff08;比较结束时和起始时的下标位置是否相同&#xff09;二&#xff1a;该整数的所有数字都必须遍历一遍&#xff0c;且只能遍历一遍&#xff08;把遍历过的数字做个标记&a…