内核解读之内存管理(3)内存管理三级架构之内存区域zone

news2025/1/16 21:04:29

文章目录

    • 1、zone类型
    • 2、zone结构体
    • 3、zone的初始化流程

1、zone类型

NUMA结构下, 每个处理器CPU与一个本地内存直接相连, 而不同处理器之前则通过总线进行进一步的连接, 因此相对于任何一个CPU访问本地内存的速度比访问远程内存的速度要快, 而Linux为了兼容NUMA结构, 把物理内存相依照CPU的不同node分成簇, 一个CPU-node对应一个本地内存pgdata_t。

这样已经很好的表示物理内存了, 在一个理想的计算机系统中, 一个页框就是一个内存的分配单元, 可用于任何事情:存放内核数据, 用户数据和缓冲磁盘数据等等。任何种类的数据页都可以存放在任页框中, 没有任何限制。

但是Linux内核又把各个物理内存节点分成n个不同的管理区域zone, 这是为什么呢?

因为实际的计算机体系结构有硬件的诸多限制, 这限制了页框可以使用的方式。尤其是, Linux内核必须处理两种硬件约束。

ISA总线的直接内存存储DMA处理器有一个严格的限制:他们只能对RAM的前16MB进行寻址。

在具有大容量RAM的现代32位计算机中, CPU不能直接访问所有的物理地址, 因为线性地址空间太小, 内核不可能直接映射所有物理内存到线性地址空间。

对于每个node中的内存,Linux分成了若干内存管理区域,定义在mmzone.h的枚举类型zone_type中,

enum zone_type {
	/*
	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
	 * to DMA to all of the addressable memory (ZONE_NORMAL).
	 * On architectures where this area covers the whole 32 bit address
	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
	 * DMA addressing constraints. This distinction is important as a 32bit
	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
	 * platforms may need both zones as they support peripherals with
	 * different DMA addressing limitations.
	 */
#ifdef CONFIG_ZONE_DMA
	ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
	ZONE_DMA32,
#endif
	/*
	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
	 * performed on pages in ZONE_NORMAL if the DMA devices support
	 * transfers to all addressable memory.
	 */
	ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
	/*
	 * A memory area that is only addressable by the kernel through
	 * mapping portions into its own address space. This is for example
	 * used by i386 to allow the kernel to address the memory beyond
	 * 900MB. The kernel will set up special mappings (page
	 * table entries on i386) for each page that the kernel needs to
	 * access.
	 */
	ZONE_HIGHMEM,
#endif
	/*
	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
	 * movable pages with few exceptional cases described below. Main use
	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
	 * to increase the number of THP/huge pages. Notable special cases are:
	 *
	 * 1. Pinned pages: (long-term) pinning of movable pages might
	 *    essentially turn such pages unmovable. Therefore, we do not allow
	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
	 *    faulted, they come from the right zone right away. However, it is
	 *    still possible that address space already has pages in
	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
	 *    touches that memory before pinning). In such case we migrate them
	 *    to a different zone. When migration fails - pinning fails.
	 * 2. memblock allocations: kernelcore/movablecore setups might create
	 *    situations where ZONE_MOVABLE contains unmovable allocations
	 *    after boot. Memory offlining and allocations fail early.
	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
	 *    situations where ZONE_MOVABLE contains memory holes after boot,
	 *    for example, if we have sections that are only partially
	 *    populated. Memory offlining and allocations fail early.
	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
	 *    memory offlining, such pages cannot be allocated.
	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
	 *    hotplugged memory blocks might only partially be managed by the
	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
	 *    parts not manged by the buddy are unmovable PG_offline pages. In
	 *    some cases (virtio-mem), such pages can be skipped during
	 *    memory offlining, however, cannot be moved/allocated. These
	 *    techniques might use alloc_contig_range() to hide previously
	 *    exposed pages from the buddy again (e.g., to implement some sort
	 *    of memory unplug in virtio-mem).
	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
	 *    situations where ZERO_PAGE(0) which is allocated differently
	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
	 *    cannot be migrated.
	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
	 *    such zone. Such pages cannot be really moved around as they are
	 *    self-stored in the range, but they are treated as movable when
	 *    the range they describe is about to be offlined.
	 *
	 * In general, no unmovable allocations that degrade memory offlining
	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
	 * if has_unmovable_pages() states that there are no unmovable pages,
	 * there can be false negatives).
	 */
	ZONE_MOVABLE,
#ifdef CONFIG_ZONE_DEVICE
	ZONE_DEVICE,
#endif
	__MAX_NR_ZONES

};

可以看到上面有些区的定义是这样的:

#ifdef CONFIG_HIGHMEM
   /*
    * A memory area that is only addressable by the kernel through
    * mapping portions into its own address space. This is for example
    * used by i386 to allow the kernel to address the memory beyond
    * 900MB. The kernel will set up special mappings (page
    * table entries on i386) for each page that the kernel needs to
    * access.
    */
   ZONE_HIGHMEM,
#endif

这表明这些区是可以配置的,并不一定会存在。如在64位系统中, 并不需要高端内存, 因为64位linux支持的最大物理内存为64TB, 对于虚拟地址空间的划分,将0x0000,0000,0000,0000 – 0x0000,7fff,ffff,f000这128T地址用于用户空间;而0xffff,8000,0000,0000以上的128T为系统空间地址, 这远大于当前我们系统中的内存空间, 因此所有的物理地址都可以直接映射到虚拟地址, 不需要高端内存的特殊映射。

管理区的类型用zone_type表示, 有如下几种:

管理内存域描述
ZONE_DMA需要单独管理DMA的物理页面的原因:
1、DMA使用物理地址访问内存,不经过MMU
2、需要连续的缓冲区
为了能够提供物理上连续的缓冲区,必须从物理地址空间专门划分一段区域用于DMA。
ZONE_DMA32不解释
ZONE_NORMA表示内核能够直接线性映射的普通内存区域。比如内核程序中代码段、全局变量以及kmalloc获取的堆内存等。从此处获取内存一般是连续的,但是不能太大。
ZONE_HIGHMEM标记了超出内核虚拟地址空间的物理内存段, 因此这段地址不能被内核直接映射,它的存在是为了解决前面提及的内存映射不够的问题。这个区域比较复杂可细分为三部分。但64位的cpu不存在虚拟地址不够用的问题,所以不存在高端内存区,arm32也即将消亡,所以我们不会再讨论高端内存区。
ZONE_MOVABLE内核定义了一个伪内存域ZONE_MOVABLE, 在防止物理内存碎片的机制memory migration中需要使用该内存域,供防止物理内存碎片的极致使用。
ZONE_DEVICE为支持热插拔设备而分配的Non Volatile Memory非易失性内存

2、zone结构体

一个管理区域用结构体struct zone来描述,struct zone在linux/mmzone.h中定义。

struct zone {
	/* Read-mostly fields */

	/* zone watermarks, access with *_wmark_pages(zone) macros */
	unsigned long _watermark[NR_WMARK];
      
	unsigned long watermark_boost;

	unsigned long nr_reserved_highatomic;

	/*
	 * We don't know if the memory that we're going to allocate will be
	 * freeable or/and it will be released eventually, so to avoid totally
	 * wasting several GB of ram we must reserve some of the lower zone
	 * memory (otherwise we risk to run OOM on the lower zones despite
	 * there being tons of freeable ram on the higher zones).  This array is
	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
	 * changes.
	 */
	long lowmem_reserve[MAX_NR_ZONES];
	/*zone 中预留的内存, 为了防止一些代码必须运行在低地址区域,所以事先保留一些低地址区域的内存。*/

#ifdef CONFIG_NUMA
	int node; /*NUMA体系下需要知道该zone属于哪个结点,因为有多个节点*/
#endif
	struct pglist_data	*zone_pgdat;   /* 这个zone所属内存节点 */
	struct per_cpu_pages	__percpu *per_cpu_pageset; 
	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
	/*
	 * the high and batch values are copied to individual pagesets for
	 * faster access
	 */
	int pageset_high;
	int pageset_batch;

#ifndef CONFIG_SPARSEMEM
	/*
	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
	 * In SPARSEMEM, this map is stored in struct mem_section
	 */
	unsigned long		*pageblock_flags;
#endif /* CONFIG_SPARSEMEM */

	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn; /*区域的起始帧号*/

	/*
	 * spanned_pages is the total pages spanned by the zone, including
	 * holes, which is calculated as:
	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
	 *
	 * present_pages is physical pages existing within the zone, which
	 * is calculated as:
	 *	present_pages = spanned_pages - absent_pages(pages in holes);
	 *
	 * present_early_pages is present pages existing within the zone
	 * located on memory available since early boot, excluding hotplugged
	 * memory.
	 *
	 * managed_pages is present pages managed by the buddy system, which
	 * is calculated as (reserved_pages includes pages allocated by the
	 * bootmem allocator):
	 *	managed_pages = present_pages - reserved_pages;
	 *
	 * cma pages is present pages that are assigned for CMA use
	 * (MIGRATE_CMA).
	 *
	 * So present_pages may be used by memory hotplug or memory power
	 * management logic to figure out unmanaged pages by checking
	 * (present_pages - managed_pages). And managed_pages should be used
	 * by page allocator and vm scanner to calculate all kinds of watermarks
	 * and thresholds.
	 *
	 * Locking rules:
	 *
	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
	 * It is a seqlock because it has to be read outside of zone->lock,
	 * and it is done in the main allocator path.  But, it is written
	 * quite infrequently.
	 *
	 * The span_seq lock is declared along with zone->lock because it is
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
	 *
	 * Write access to present_pages at runtime should be protected by
	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
	 * present_pages should use get_online_mems() to get a stable value.
	 */
	atomic_long_t		managed_pages; /*present_pages中被buddy system管理的业数*/
	unsigned long		spanned_pages;   /*  总页数,包含空洞  */
	unsigned long		present_pages;   /*  可用页数,不包含空洞  */
#if defined(CONFIG_MEMORY_HOTPLUG)
	unsigned long		present_early_pages;
#endif
#ifdef CONFIG_CMA
	unsigned long		cma_pages;
#endif

	const char		*name;

#ifdef CONFIG_MEMORY_ISOLATION
	/*
	 * Number of isolated pageblock. It is used to solve incorrect
	 * freepage counting problem due to racy retrieving migratetype
	 * of pageblock. Protected by zone->lock.
	 */
	unsigned long		nr_isolate_pageblock;
#endif

#ifdef CONFIG_MEMORY_HOTPLUG
	/* see spanned/present_pages for more description */
	seqlock_t		span_seqlock;
#endif

	int initialized;

	/* Write-intensive fields used from the page allocator */
	CACHELINE_PADDING(_pad1_);

	/* free areas of different sizes */
	struct free_area	free_area[MAX_ORDER]; /* 伙伴系统:zone区域的内存被分成11种2的n次方大小的内存块,相同大小的内存块通过链表组织起来 */

	/* zone flags, see below */
	unsigned long		flags;
/*
enum zone_flags {
	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
					 * Cleared when kswapd is woken.
					 */
	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
};
*/
    
	/* Primarily protects free_area */
	spinlock_t		lock;

	/* Write-intensive fields used by compaction and vmstats. */
	CACHELINE_PADDING(_pad2_);

	/*
	 * When free pages are below this point, additional steps are taken
	 * when reading the number of free pages to avoid per-cpu counter
	 * drift allowing watermarks to be breached
	 */
	unsigned long percpu_drift_mark;

#if defined CONFIG_COMPACTION || defined CONFIG_CMA
	/* pfn where compaction free scanner should start */
	unsigned long		compact_cached_free_pfn;
	/* pfn where compaction migration scanner should start */
	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
	unsigned long		compact_init_migrate_pfn;
	unsigned long		compact_init_free_pfn;
#endif

#ifdef CONFIG_COMPACTION
	/*
	 * On compaction failure, 1<<compact_defer_shift compactions
	 * are skipped before trying again. The number attempted since
	 * last failure is tracked with compact_considered.
	 * compact_order_failed is the minimum compaction failed order.
	 */
	unsigned int		compact_considered;
	unsigned int		compact_defer_shift;
	int			compact_order_failed;
#endif

#if defined CONFIG_COMPACTION || defined CONFIG_CMA
	/* Set to true when the PG_migrate_skip bits should be cleared */
	bool			compact_blockskip_flush;
#endif

	bool			contiguous;

	CACHELINE_PADDING(_pad3_);
	/* Zone statistics */ /* zone统计信息 */
	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
} ____cacheline_internodealigned_in_smp;

每个zone在系统启动时会计算出 3 个水位值, 分别为 WMAKR_MIN, WMARK_LOW, WMARK_HIGH 水位, 这在页面分配器和 kswapd 页面回收中会用到。

enum zone_watermarks {
    WMARK_MIN,
    WMARK_LOW,
    WMARK_HIGH,
    WMARK_PROMO,
    NR_WMARK
};

当系统中可用内存很少的时候,系统进程kswapd被唤醒, 开始回收释放page, 水印这些参数(WMARK_MIN, WMARK_LOW, WMARK_HIGH)影响着这个代码的行为。

每个zone有三个水平标准:watermark[WMARK_MIN], watermark[WMARK_LOW], watermark[WMARK_HIGH],帮助确定zone中内存分配使用的压力状态:

标准描述
watermark[WMARK_MIN]当空闲页面的数量达到page_min所标定的数量的时候, 说明页面数非常紧张, 分配页面的动作和kswapd线程同步运行.WMARK_MIN所表示的page的数量值,是在内存初始化的过程中调用free_area_init_core中计算的。这个数值是根据zone中的page的数量除以一个>1的系数来确定的。通常是这样初始化的ZoneSizeInPages/12
watermark[WMARK_LOW]当空闲页面的数量达到WMARK_LOW所标定的数量的时候,说明页面刚开始紧张, 则kswapd线程将被唤醒,并开始释放回收页面
watermark[WMARK_HIGH]当空闲页面的数量达到page_high所标定的数量的时候, 说明内存页面数充足, 不需要回收, kswapd线程将重新休眠,通常这个数值是page_min的3倍

由于页框频繁的分配和释放,内核在每个zone中放置了一些事先保留的页框。这些页框只能由来自本地CPU的请求使用,存放在per_cpu_pages。

/* Fields and list protected by pagesets local_lock in page_alloc.c */
struct per_cpu_pages {
	spinlock_t lock;	/* Protects lists field */
	int count;		/* number of pages in the list */
	int high;		/* high watermark, emptying needed */
	int batch;		/* chunk size for buddy add/remove */
	short free_factor;	/* batch scaling factor during free */
#ifdef CONFIG_NUMA
	short expire;		/* When 0, remote pagesets are drained */
#endif

	/* Lists of pages, one per migrate type stored on the pcp-lists */
	struct list_head lists[NR_PCP_LISTS];
} ____cacheline_aligned_in_smp;

当per_cpu_pages里的page数超过high值时,就会归还batch个pages给zone的buddy system。如果pcp没有free page了,每次从zone中批量分配batch个pages。

关于pcp技术后面还会深入。

struct free_area free_area[MAX_ORDER];
伙伴系统:zone区域的内存被分成11种2的n次方大小的内存块,相同大小的内存块通过链表组织起来。

struct free_area {
	struct list_head	free_list[MIGRATE_TYPES];
	unsigned long		nr_free;
};

enum migratetype {
	MIGRATE_UNMOVABLE,
	MIGRATE_MOVABLE,
	MIGRATE_RECLAIMABLE,
	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
#ifdef CONFIG_CMA
	/*
	 * MIGRATE_CMA migration type is designed to mimic the way
	 * ZONE_MOVABLE works.  Only movable pages can be allocated
	 * from MIGRATE_CMA pageblocks and page allocator never
	 * implicitly change migration type of MIGRATE_CMA pageblock.
	 *
	 * The way to use it is to change migratetype of a range of
	 * pageblocks to MIGRATE_CMA which can be done by
	 * __free_pageblock_cma() function.
	 */
	MIGRATE_CMA,
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	MIGRATE_ISOLATE,	/* can't allocate from here */
#endif
	MIGRATE_TYPES
};

这张图画的非常棒,展示了内存各级的关系:

3、zone的初始化流程

--->setup_arch
  --->bootmem_init
      ---->sparse_init
      ---->zone_sizes_init
         --->free_area_init
            ---->free_area_init_node
void __init bootmem_init(void)
{
	unsigned long min, max;

	min = PFN_UP(memblock_start_of_DRAM());
	max = PFN_DOWN(memblock_end_of_DRAM());

	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);

	max_pfn = max_low_pfn = max;
	min_low_pfn = min;
...

bootmem_init从memblock管理的物理内存计算出物理内存的最大和最小PFN,用于初始化zone。

free_area_init初始化了所有node结点结构体pg_data_t和每个node的zone。关于node结点的初始化可以参看前面的文章,简而言之就是从设备树解析出有多少个node结点,以及每个node结点的内存区间。

然后对每个node调用free_area_init_node:

static void __init free_area_init_node(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;

	/* pg_data_t should be reset to zero when it's allocated */
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);

	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);

	pgdat->node_id = nid;
	pgdat->node_start_pfn = start_pfn;
	pgdat->per_cpu_nodestats = NULL;

	if (start_pfn != end_pfn) {
		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
	} else {
		pr_info("Initmem setup node %d as memoryless\n", nid);
	}

	calculate_node_totalpages(pgdat, start_pfn, end_pfn);

	alloc_node_mem_map(pgdat);
	pgdat_set_deferred_range(pgdat);

	free_area_init_core(pgdat);
}

初始化了pg_data_t的部分成员,主要计算每个结点的内存页数(每个结点的内存区间存放在memblock里,根据memblock来初始化每个结点的内存区间)、空洞内存页数,每个zone的起始pfn、可用页数(除去一部分用来存放mem_map)、平铺页数(包含空洞)、存在页数(原始物理内存页数)、free_area链表数组等。

如果是平坦内存模型,alloc_node_mem_map函数用于给pg_data_t的node_mem_map分配空间;

如果不是,alloc_node_mem_map是个空函数,因为稀疏内存模型不用pg_data_t里的node_mem_map存放物理page。

这张图画的非常棒,展示了内存各级的关系:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FEmNzXr5-1672924168842)(https://gimg2.baidu.com/image_search/src=http%3A%2F%2Fimg-blog.csdnimg.cn%2F6d25e52f470a47349a5de1e2f48bc429.png%3Fx-oss-process%3Dimage%2Fwatermark%2Ctype_ZHJvaWRzYW5zZmFsbGJhY2s%2Cshadow_50%2Ctext_Q1NETiBA5byg5a2f5rWpX2pheQ%3D%3D%2Csize_20%2Ccolor_FFFFFF%2Ct_70%2Cg_se%2Cx_16&refer=http%3A%2F%2Fimg-blog.csdnimg.cn&app=2002&size=f9999,10000&q=a80&n=0&g=0n&fmt=auto?sec=1675336720&t=78dc5a3886d8bf544cd9242fbb7b6c5d)]

下一节将介绍page结构体。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/142589.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flink数据流类型之间的转换(WindowedStream、DataStream、KeyedStream、AllWindowStream之间的转换)

Flink提供了一些流API&#xff0c;其中包括WindowedStream、DataStream、KeyedStream和AllWindowStream。 &#x1f34a;WindowedStream是一种特殊的流&#xff0c;其中数据已按时间或数据元素的键进行分组&#xff0c;并且每个分组的数据都在窗口中按时间划分。这意味着&…

2023年出入境政策-喜忧参半

2023年已经到来&#xff0c;随着卫健委公布中国防控新冠措施调整优化以后&#xff0c;出入境政策相应也有了很大变化&#xff0c;知识人网小编概括为喜忧参半。喜的是从国外入境中国不再需要集中隔离&#xff1b;忧的是有些国家对于中国人入境增加了核酸检测要求。下面我们就这…

第一章 Java入门开发

第一章 Java入门开发 目录一&#xff0e; 概述二&#xff0e; JDK1. 概述2. 安装3. JDK目录一&#xff0e; 概述 Java是一门高级程序设计语言&#xff0c;是支持跨平台和完成面向对象的程序设计语言。针对不同的开发市场&#xff0c;sun公司将Java分为Java SE&#xff08;标准版…

关于clip通信架构设计的调研

网络上大部分关于clip-as-service的描述都是关于它如何使用&#xff0c;基于它的编码功能上去计算文本相似度&#xff0c;根据文字推荐图片等等&#xff0c;只有作者的创作思路里面提及通信架构的设计。 作者博客&#xff1a; 链接: link 如何解决多个客户端同时请求服务端的场…

STS4中MVC项目中把log4j从1.x升级到2.x中遇到的两个问题

文章目录问题一 升级后看Maven Dependencies中还是有依赖1.x的log4j问题二 web.xml配置不对项目原来的log4j版本是1.2.14&#xff0c;有漏洞需要升级到2.18.0.问题一 升级后看Maven Dependencies中还是有依赖1.x的log4j 原因是有关联依赖&#xff0c; 项目中别的jar库有依赖低…

【算法笔记】【专题】RMQ 问题:ST表/树状数组/线段树

0. 前言 好久没更算法笔记专栏了&#xff0c;正好学了新算法来更新…… 这也是本专栏的第一个专题问题&#xff0c;涉及到三种数据结构&#xff0c;如果写得有问题请各位大佬多多指教&#xff0c;谢谢&#xff01; 1. 关于 RMQ 问题 RMQ 的全称是 Range Minimum/Maximum Que…

《Linux运维实战:Centos7.6基于docker-compose一键离线部署单节点redis6.2.8 》

一、部署背景 由于业务系统的特殊性&#xff0c;我们需要面向不通的客户安装我们的业务系统&#xff0c;而作为基础组件中的redis针对不同的客户环境需要多次部署&#xff0c;作为一个运维工程师&#xff0c;提升工作效率也是工作中的重要一环。所以我觉得有必要针对redis6.2.8…

使用 .NET 标记游戏地图关键坐标点

本文以天涯明月刀 OL 游戏的云上之城探索玩法为例&#xff0c;介绍如何使用 .NET 在游戏地图中标记大量关键坐标点。 1. 背景 大概很多程序员都是喜欢玩游戏的吧&#xff0c;我也不例外。我们经常会看到电视剧中的各路游戏大神&#xff0c;要么是有只有他一个人会的骚操作&…

Linux--信号--信号的产生方式--核心转储--0104

1. 什么是信号 生活中的信号&#xff1a;红绿灯&#xff0c;狼烟&#xff0c;撤退、集合...。 我们认识这些信号&#xff0c;首先是因为自己记住了对应场景下的信号后续需要执行的动作。如果信号没有产生&#xff0c;我们依旧知道如何处理这个信号。收到信号&#xff0c;我们…

springboot学习(七十八) springboot中通过自定义注解实现数据脱敏的功能

文章目录前言一、引入hutools工具类二、定义常用需要脱敏的数据类型的枚举三、定义脱敏方式枚举四、自定义脱敏的注解五、自定义Jackson的序列化方式六、使用七、脱敏效果前言 对于某些接口返回的信息&#xff0c;涉及到敏感数据的必须进行脱敏操作&#xff0c;例如银行卡号、…

带你了解ssh服务过程

远程连接服务 1、什么是远程连接服务器 远程连接服务器通过文字或图形接口方式来远程登录系统&#xff0c;让你在远程终端前登录linux主机以取得可操作主机接口&#xff08;shell&#xff09;&#xff0c;而登录后的操作感觉就像是坐在系统前面一样。 2、远程连接服务器的功…

【C++】函数重载的使用及原理

概述 在学校里&#xff0c;我们都会有班里同学被起外号的经历&#xff0c;而且同一个人可能还会有好几个外号。 在自然语言中&#xff0c;一个词可以有多重含义&#xff0c;人们可以通过上下文来判断该词真实的含义&#xff0c;即该词被重载了。 目录 概述 什么是函数重载 …

项目管理:如何制作项目进度计划表?

项目进度管理是根据项目目标&#xff0c;编制合理的进度计划&#xff0c;并在项目推进过程中随时检查项目执行情况。 项目进度管理的目的就是为了实现最优工期&#xff0c;多快好省地完成任务。 而甘特图&#xff0c;就是用表格图形的方式来展示项目的进展&#xff0c;是一个比…

赛狐ERP:优秀的亚马逊运营具备的五项能力!

我们都知道&#xff0c;亚马逊运营是整个店铺的主导&#xff0c;很大程度上会影响着一个店铺经营的好坏&#xff0c;那么一个好的亚马逊运营&#xff0c;应该具备哪些能力呢&#xff1f;今天赛狐ERP就来给和大家聊一聊&#xff0c;希望对各位亚马逊运营们会有启发&#xff01;1…

ORB-SLAM2 --- LocalMapping::Run 局部建图线程解析

目录 一、线程作用 二、局部建图线程主要流程 三、局部建图线程主函数 四、调用函数解析 4.1 设置"允许接受关键帧"的状态标志LocalMapping::SetAcceptKeyFrames函数解析 4.2 查看列表中是否有等待被插入的关键帧LocalMapping::CheckNewKeyFrames函数 4.3 …

十分钟学会在linux上部署chrony服务器(再见 NTP,是时候拥抱下一代时间同步服务 Chrony 了)

chrony服务器 Chrony 相较于 NTPD 服务的优势 安装与配置&#xff08;Chrony的配置文件是/etc/chrony.conf&#xff09; 同步网络时间服务器 设置开机启动&#xff0c;重启服务 chronyc sources 输出结果解析 练习 实验模型图如下 实验a如下 实验b如下 再见 NTP&#x…

中国手机市场全面衰退,连苹果也未能幸免,大跌近三成

CINNO公布了11月份国内手机市场的数据&#xff0c;数据显示2022年11月份中国市场的手机出货量同比下滑21.7%&#xff0c;在整体大环境出现销量下滑的情况下&#xff0c;此前曾持续逆势增长的苹果也顶不住了&#xff0c;苹果在中国市场的出货量也出现了下滑的势头。数据显示2022…

06-Alibaba Nacos注册中心源码剖析

Nacos&Ribbon&Feign核心微服务架构图 架构原理 1、微服务系统在启动时将自己注册到服务注册中心&#xff0c;同时外发布 Http 接口供其它系统调用(一般都是基于SpringMVC) 2、服务消费者基于 Feign 调用服务提供者对外发布的接口&#xff0c;先对调用的本地接口加上注…

JS继承有哪些,你能否手写其中一两种呢?

引言 JS系列暂定 27 篇&#xff0c;从基础&#xff0c;到原型&#xff0c;到异步&#xff0c;到设计模式&#xff0c;到架构模式等&#xff0c; 本篇是 JS系列中第 3 篇&#xff0c;文章主讲 JS 继承&#xff0c;包括原型链继承、构造函数继承、组合继承、寄生组合继承、原型…

前端vue项目发送请求不携带cookie(vue.config.js和nginx反向代理)

一、本地环境——使用vue.config.js配置了跨域代理本来发现问题&#xff0c;是因为后台记录到接收到的sessionId一直在变化&#xff0c;导致需要在同一个sessionId下处理的逻辑无法实现。一开始以为是前后端分离跨域导致的&#xff0c;网上给出了解决方案&#xff1a;main.js中…