理想架构的高回退Doherty功率放大器理论与仿真-Multistage
参考:
三路Doherty设计
01 射频基础知识–基础概念
Switchmode RF and Microwave Power Amplifiers、
理想架构的Doherty功率放大器(等分经典款)的理论与ADS电流源仿真参考:理想架构的Doherty功率放大器理论与仿真
理想架构的非对称高回退Doherty功率放大器理论与仿真参考:理想架构的非对称高回退Doherty功率放大器理论与仿真
本博客的资源下载链接:
理想Multistage高回退Doherty在ADS中的仿真(使用理想电流源)
目录
- 理想架构的高回退Doherty功率放大器理论与仿真-Multistage
- 1、Multistage高回退Doherty功率放大器拟解决的问题
- 2、一种1: m:n 功率分配的Multistage Doherty功率放大器
- 2.1、1:2:2 三路Multistage Doherty PA 的ADS原理图
- 2.2、1:2:2 三路Multistage Doherty PA 回退性能
- 2.3、1:2:2 三路Multistage Doherty PA电压电流曲线
- 2.4、1:2:2 三路Multistage Doherty PA阻抗调制曲线
- 2.5、其他分配比的曲线
- 3、传统Multistage DPA改进---Novel三路Doherty
- 3.1、Novel三路Doherty的工作原理
- 3.2、Novel型三路Doherty的设计步骤
- 3.3、Novel型三路Doherty的ADS仿真
- 3.4、Novel型DPA仿真结果-回退
- 3.5、Novel型DPA仿真结果-电压电流
- 3.6、Novel型DPA仿真结果-输出阻抗
1、Multistage高回退Doherty功率放大器拟解决的问题
理想架构的非对称高回退Doherty功率放大器理论与仿真中介绍了非对称架构来提升回退的dB数,但是对于传统非对称结构,只有一个回退峰值,效率低:
一种更加牛皮的架构是Multistage DPA架构,有多个回退点,这样回退效率要好很多,如:
2、一种1: m:n 功率分配的Multistage Doherty功率放大器
对于上图,一个存在三个效率峰值,分别在饱和、-5.1dB回退、-9.5dB回退。抛开复杂的公式推导,我们直观就需要一个载波功放和两个峰值功放。
与理想架构的非对称高回退Doherty功率放大器理论与仿真中多峰值功放同时开启不同,1: m:n 的Multistage Doherty功率放大器的峰值功放在不同回退点依次开启,对于上图就是-9.5dB回退、-5.1dB回退分别开启。当然,你有越多的峰值功放依次开启,你的回退点越多,效率也越高,如图:
而且,此处强调了功率分配比,与理想架构的非对称高回退Doherty功率放大器理论与仿真类似,分配越不均,就可以造成越大的回退。
2.1、1:2:2 三路Multistage Doherty PA 的ADS原理图
废话少说,我们先看看ADS中对1:2:2的Multistage DPA的仿真原理图:
2.2、1:2:2 三路Multistage Doherty PA 回退性能
可以看到有两个回退峰值,分别在-9.5dB、-4.5dB左右:
2.3、1:2:2 三路Multistage Doherty PA电压电流曲线
由于分配比是1:2:2,因此峰值功放的饱和输出功率是载波功放的两倍;此外,在-9.5dB回退点,只有载波功放工作,两个峰值功放均未开启;在-9.5dB回退点到-4.5dB回退点之间,峰值功放1开始工作,并和载波功放进行负载调制;在-4.5dB到饱和之间,峰值功放2开始工作,并和峰值功放1进行负载调制,此时载波功放不参与负载调制了,载波功放输出功率不变。在饱和点,三个功放都是饱和输出:
2.4、1:2:2 三路Multistage Doherty PA阻抗调制曲线
可以看到,在峰值功放2开启后,载波功放输出阻抗保持Ropt不变,一直饱和输出;此阶段峰值功放2和峰值功放1进行负载调制:
2.5、其他分配比的曲线
1:2:2.5 (最高回退-9.5dB左右):
1:2.5:2.5 (最高回退11dB左右):
3、传统Multistage DPA改进—Novel三路Doherty
3.1、Novel三路Doherty的工作原理
Novel三路优势:同样的分配比该架构的回退范围更大。
这是个专利:3-WAY DOHERTY AMPLIFIER WITH MINIMUM OUTPUT NETWORK
Novel型三路Doherty的Carrier路放大器能够在Peak2导通后继续负载调制,弥补了传统三路的不足。对比传统三路Doherty,Novel三路的Carrier路与负载之间使用了一个阻抗变换器。Peak1和Peak2组成一个两路Doherty,并通过一个阻抗变换器连接到阻抗变换器上,为了使信号在负载处实现相位对齐,在Carrier路和Peak2路的输入端加入了90度相移。
Novel三路Doherty的三个工作阶段
1:小信号时,只有Carrier路放大器工作,阻抗变换器Zo3将Carrier的负载变换为高阻,使得Carrier路放大器电压饱和点提前,达到一个最大效率点,但没有达到最大功率;
2:信号增大到Peak1开启后,它提供电流给负载RL,使p点电压提高,通过有源负载牵引(相当于Z03后的阻抗增大,Z03前的阻抗下降)即Carrier路输出阻抗下降,于是Carrier路的输出电流继续增大,即输出功率增加,信号继续增大直到Peak1达到电压饱和;形成第二个效率最大点;
3:信号大到Peak2开启后,随着Peak2贡献给q点电流的增加,使q点电压增大,从Z04后看去的阻抗增大,Z04前即Peak1输出阻抗下降,使Peak1电流增大,输出功率增大,与此同时p点电流增大,电压抬高,Z03后的等效负载抬高,Z03前即Carrier路输出阻抗下降,其电流继续增大,输出功率继续增大,继而达到功率饱和,Peak2输出阻抗下降会使电流增大,Carrier路输出功率继续增大,直到都达到电流饱和。
3.2、Novel型三路Doherty的设计步骤
1.选最大效率点
根据效率曲线的最大效率点,即第一(k1)和第二回退点(k2),可以得到各路功率分配比:
P
m
_
m
a
x
:
P
p
1
_
m
a
x
:
P
p
2
_
m
a
x
=
k
2
:
k
1
(
1
−
k
2
)
:
(
1
−
k
1
)
(
1
−
k
2
)
\mathrm{P_{m\_max}:P_{p1\_max}:P_{p2\_max}=k_{2}:k_{1}(1-k_{2}):(1-k_{1})(1-k_{2})}
Pm_max:Pp1_max:Pp2_max=k2:k1(1−k2):(1−k1)(1−k2)
如果给出功率分配比,也可以算出效率回退点的值,如下式所示:
k
1
=
P
p
1
_
m
a
x
P
p
1
_
m
a
x
+
P
p
2
_
m
a
x
\mathrm{k_1=\frac{P_{p1\_max}}{P_{p1\_max}+P_{p2\_max}}}
k1=Pp1_max+Pp2_maxPp1_max
k
2
=
P
m
_
max
P
m
_
max
+
P
p
1
_
max
+
P
p
2
_
max
\mathrm{k}_2=\frac{\mathrm{P}_{{\text{m}\_\max}}}{\mathrm{P}_{{\text{m}\_\max}}+\mathrm{P}_{\text{p}1\_\max}+\mathrm{P}_{\text{p}2\_\max}}
k2=Pm_max+Pp1_max+Pp2_maxPm_max
2.合路线特征阻抗
为了求出特性阻抗,首先选定Carrier路功放在最大功率时的负载RmL和输出端口的负载RL,根据k1和k2,Z0x可以计算
Z
03
=
R
m
L
R
L
k
2
Z
04
=
R
m
L
k
1
(
k
2
1
−
k
2
)
Z
05
=
Z
03
(
k
2
1
−
k
2
)
.
\begin{gathered} \mathrm{Z}_{03}=\sqrt{\frac{\mathrm{R_{mL}R_{L}}}{\mathrm{k_{2}}}} \\ \mathrm{Z}_{04}={\frac{\mathrm{R}_{\mathrm{mL}}}{\mathrm{k}_{1}}}\left({\frac{\mathrm{k}_{2}}{1-\mathrm{k}_{2}}}\right) \\ \mathrm{Z}_{05}=\mathrm{Z}_{03}(\frac{\mathrm{k}_{2}}{1-\mathrm{k}_{2}}). \end{gathered}
Z03=k2RmLRLZ04=k1RmL(1−k2k2)Z05=Z03(1−k2k2).
3.Carrier负载调制驻波比
驻波比可以计算如下:
V
S
W
R
=
1
k
2
\mathrm{VSWR}=\frac{1}{\mathrm{k}_{2}}
VSWR=k21
4.相位对齐
根据设计的合路器,算出各路输出匹配电路的相位。然后在各路加入输入offset线,使得各路在最后合路点具有相同的相位,电桥的90度耦合端口按90度相位计算。
3.3、Novel型三路Doherty的ADS仿真
计算公式参考上面的:
3.4、Novel型DPA仿真结果-回退
1:2:2分配下结果如下:
Novel型三路Doherty的Carrier路放大器能够在Peak2导通后继续负载调制,弥补了传统三路的不足,因此其使用同样的分配比的话回退性能更好。
3.5、Novel型DPA仿真结果-电压电流
一直处于调制状态: