计算机设计大赛 深度学习 opencv python 实现中国交通标志识别_1

news2024/10/4 20:27:59

文章目录

  • 0 前言
  • 1 yolov5实现中国交通标志检测
  • 2.算法原理
    • 2.1 算法简介
    • 2.2网络架构
    • 2.3 关键代码
  • 3 数据集处理
    • 3.1 VOC格式介绍
    • 3.2 将中国交通标志检测数据集CCTSDB数据转换成VOC数据格式
    • 3.3 手动标注数据集
  • 4 模型训练
  • 5 实现效果
    • 5.1 视频效果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的中国交通标志识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 yolov5实现中国交通标志检测

整个互联网基本没有国内交通标志识别的开源项目(都是国外的),今天学长分享一个中国版本的实时交通标志识别项目,非常适合作为竞赛项目~

在这里插入图片描述

2.算法原理

2.1 算法简介

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

2.2网络架构

在这里插入图片描述

上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。

2.3 关键代码



    class Detect(nn.Module):
        stride = None  # strides computed during build
        onnx_dynamic = False  # ONNX export parameter
    
        def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
            super().__init__()
            self.nc = nc  # number of classes
            self.no = nc + 5  # number of outputs per anchor
            self.nl = len(anchors)  # number of detection layers
            self.na = len(anchors[0]) // 2  # number of anchors
            self.grid = [torch.zeros(1)] * self.nl  # init grid
            self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
            self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
            self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
            self.inplace = inplace  # use in-place ops (e.g. slice assignment)
    
        def forward(self, x):
            z = []  # inference output
            for i in range(self.nl):
                x[i] = self.m[i](x[i])  # conv
                bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
    
                if not self.training:  # inference
                    if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                        self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
    
                    y = x[i].sigmoid()
                    if self.inplace:
                        y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                        y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                        xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                        wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                        y = torch.cat((xy, wh, y[..., 4:]), -1)
                    z.append(y.view(bs, -1, self.no))
    
            return x if self.training else (torch.cat(z, 1), x)
    
        def _make_grid(self, nx=20, ny=20, i=0):
            d = self.anchors[i].device
            if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
            else:
                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
            grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
            anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
                .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
            return grid, anchor_grid


    class Model(nn.Module):
        def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
            super().__init__()
            if isinstance(cfg, dict):
                self.yaml = cfg  # model dict
            else:  # is *.yaml
                import yaml  # for torch hub
                self.yaml_file = Path(cfg).name
                with open(cfg, encoding='ascii', errors='ignore') as f:
                    self.yaml = yaml.safe_load(f)  # model dict
    
            # Define model
            ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
            if nc and nc != self.yaml['nc']:
                LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
                self.yaml['nc'] = nc  # override yaml value
            if anchors:
                LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
                self.yaml['anchors'] = round(anchors)  # override yaml value
            self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
            self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
            self.inplace = self.yaml.get('inplace', True)
    
            # Build strides, anchors
            m = self.model[-1]  # Detect()
            if isinstance(m, Detect):
                s = 256  # 2x min stride
                m.inplace = self.inplace
                m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
                m.anchors /= m.stride.view(-1, 1, 1)
                check_anchor_order(m)
                self.stride = m.stride
                self._initialize_biases()  # only run once
    
            # Init weights, biases
            initialize_weights(self)
            self.info()
            LOGGER.info('')
    
        def forward(self, x, augment=False, profile=False, visualize=False):
            if augment:
                return self._forward_augment(x)  # augmented inference, None
            return self._forward_once(x, profile, visualize)  # single-scale inference, train
    
        def _forward_augment(self, x):
            img_size = x.shape[-2:]  # height, width
            s = [1, 0.83, 0.67]  # scales
            f = [None, 3, None]  # flips (2-ud, 3-lr)
            y = []  # outputs
            for si, fi in zip(s, f):
                xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
                yi = self._forward_once(xi)[0]  # forward
                # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
                yi = self._descale_pred(yi, fi, si, img_size)
                y.append(yi)
            y = self._clip_augmented(y)  # clip augmented tails
            return torch.cat(y, 1), None  # augmented inference, train
    
        def _forward_once(self, x, profile=False, visualize=False):
            y, dt = [], []  # outputs
            for m in self.model:
                if m.f != -1:  # if not from previous layer
                    x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
                if profile:
                    self._profile_one_layer(m, x, dt)
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
                if visualize:
                    feature_visualization(x, m.type, m.i, save_dir=visualize)
            return x
    
        def _descale_pred(self, p, flips, scale, img_size):
            # de-scale predictions following augmented inference (inverse operation)
            if self.inplace:
                p[..., :4] /= scale  # de-scale
                if flips == 2:
                    p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
                elif flips == 3:
                    p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
            else:
                x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
                if flips == 2:
                    y = img_size[0] - y  # de-flip ud
                elif flips == 3:
                    x = img_size[1] - x  # de-flip lr
                p = torch.cat((x, y, wh, p[..., 4:]), -1)
            return p
    
        def _clip_augmented(self, y):
            # Clip YOLOv5 augmented inference tails
            nl = self.model[-1].nl  # number of detection layers (P3-P5)
            g = sum(4 ** x for x in range(nl))  # grid points
            e = 1  # exclude layer count
            i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
            y[0] = y[0][:, :-i]  # large
            i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
            y[-1] = y[-1][:, i:]  # small
            return y
    
        def _profile_one_layer(self, m, x, dt):
            c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
            o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
            t = time_sync()
            for _ in range(10):
                m(x.copy() if c else x)
            dt.append((time_sync() - t) * 100)
            if m == self.model[0]:
                LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
            LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
            if c:
                LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
    
        def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
            # https://arxiv.org/abs/1708.02002 section 3.3
            # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
            m = self.model[-1]  # Detect() module
            for mi, s in zip(m.m, m.stride):  # from
                b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
                b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
                b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
                mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
    
        def _print_biases(self):
            m = self.model[-1]  # Detect() module
            for mi in m.m:  # from
                b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
                LOGGER.info(
                    ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
    
        # def _print_weights(self):
        #     for m in self.model.modules():
        #         if type(m) is Bottleneck:
        #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights
    
        def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
            LOGGER.info('Fusing layers... ')
            for m in self.model.modules():
                if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                    m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                    delattr(m, 'bn')  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
            self.info()
            return self
    
        def autoshape(self):  # add AutoShape module
            LOGGER.info('Adding AutoShape... ')
            m = AutoShape(self)  # wrap model
            copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributes
            return m
    
        def info(self, verbose=False, img_size=640):  # print model information
            model_info(self, verbose, img_size)
    
        def _apply(self, fn):
            # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
            self = super()._apply(fn)
            m = self.model[-1]  # Detect()
            if isinstance(m, Detect):
                m.stride = fn(m.stride)
                m.grid = list(map(fn, m.grid))
                if isinstance(m.anchor_grid, list):
                    m.anchor_grid = list(map(fn, m.anchor_grid))
            return self


    def parse_model(d, ch):  # model_dict, input_channels(3)
        LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
        anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
        na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
        no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
    
        layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
        for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
            m = eval(m) if isinstance(m, str) else m  # eval strings
            for j, a in enumerate(args):
                try:
                    args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                except NameError:
                    pass
    
            n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
            if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                     BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
                c1, c2 = ch[f], args[0]
                if c2 != no:  # if not output
                    c2 = make_divisible(c2 * gw, 8)
    
                args = [c1, c2, *args[1:]]
                if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                    args.insert(2, n)  # number of repeats
                    n = 1
            elif m is nn.BatchNorm2d:
                args = [ch[f]]
            elif m is Concat:
                c2 = sum(ch[x] for x in f)
            elif m is Detect:
                args.append([ch[x] for x in f])
                if isinstance(args[1], int):  # number of anchors
                    args[1] = [list(range(args[1] * 2))] * len(f)
            elif m is Contract:
                c2 = ch[f] * args[0] ** 2
            elif m is Expand:
                c2 = ch[f] // args[0] ** 2
            else:
                c2 = ch[f]
    
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
            np = sum(x.numel() for x in m_.parameters())  # number params
            m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
            LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
            save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
            layers.append(m_)
            if i == 0:
                ch = []
            ch.append(c2)
        return nn.Sequential(*layers), sorted(save)


3 数据集处理

中国交通标志检测数据集CCTSDB,由长沙理工大学提供,包括上万张有标注的图片

推荐只使用前4000张照片,因为后面有很多张图片没有标注,需要一张一张的删除,太过于麻烦,所以尽量用前4000张图

3.1 VOC格式介绍

VOC格式主要包含三个文件夹Annotations,ImageSets,JPEGImages,主要适用于faster-
rcnn等模型的训练,ImageSets下面有一个Main的文件夹,如下图,一定按照这个名字和格式建好文件夹:

  • Annotations:这里是存放你对所有数据图片做的标注,每张照片的标注信息必须是xml格式。

  • JPEGImages:用来保存你的数据图片,一定要对图片进行编号,一般按照voc数据集格式,采用六位数字编码,如000001.jpg、000002.jpg等。

  • ImageSets:该文件下有一个main文件,main文件下有四个txt文件,分别是train.txt、test.txt、trainval.txt、val.txt,里面都是存放的图片号码。

在这里插入图片描述

3.2 将中国交通标志检测数据集CCTSDB数据转换成VOC数据格式

将标注的数据提取出来并且排序,并将里面每一行分割成一个文件

在这里插入图片描述

3.3 手动标注数据集

如果为了更深入的学习也可自己标注,但过程相对比较繁琐,麻烦。

以下简单介绍数据标注的相关方法,数据标注这里推荐的软件是labelimg,通过pip指令即可安装,相关教程可网上搜索


pip install labelimg

在这里插入图片描述

4 模型训练

修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

5 实现效果

5.1 视频效果

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1424062.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【零基础学习CAPL】——CAN报文的发送(按下按钮同时周期性发送)

🙋‍♂️【零基础学习CAPL】系列💁‍♂️点击跳转 文章目录 1.概述2.面板创建3.系统变量创建4.CAPL实现4.1.函数展示4.2.全量报文展示5.效果1.概述 本章主要介绍使用CAPL和Panel在按下按钮时发送周期性CAN报文。 本章主要在“【零基础学习CAPL】——CAN报文的发送(配合P…

即时设计和xd对比有什么优势?

Adobe XD 是 Adobe 公司推出的用户体验设计工具主要用于创建和设计用户界面的原型和设计草案&#xff0c;如网站、移动应用程序和桌面应用程序。然而&#xff0c;由于其复杂的功能使用和全英文操作界面&#xff0c;许多设计师被说服离开。Adobe XD 这是一款价格相对较高的商业软…

【微服务】Spring Boot集成ELK实用案例

推荐一款我一直在用国内很火的AI网站&#xff0c;包含GPT3.5/4.0、文心一言、通义千问、智谱AI等多个AI模型&#xff0c;支持PC、APP、VScode插件同步使用&#xff0c;点击链接跳转->ChatGPT4.0中文版 一、前言 在现代软件开发中&#xff0c;微服务架构已成为一种流行趋势。…

Kafka运维相关知识

目录 一、基本概念 二、技术特性 三、设计思想 四、运维建议 一、基本概念 Apache kafka 是一个分布式的基于push-subscribe的消息系统&#xff0c;它具备快速、可扩展、可持久化的特点。它的最大的特性就是可以实时的处理大量数据以满足各种需求场景&#xff1a;比如基于h…

辽宁链家新房数据采集与可视化实现

摘 要 网络爬虫也叫做网络机器人&#xff0c;是一种按照一定的规则&#xff0c;自动地抓取网络信息&#xff0c;进行数据信息的采集与整理的程序或者脚本。随着海量数据的出现&#xff0c;如何快速有效的获取到我们想要的数据成为难题。以房源信息为例&#xff0c;该文使用Pyt…

【JAVE SE】---运算符和程序逻辑控制语句

1.运算符 算数运算符 - * / % 注意&#xff1a;1.Java的%符号左右两边可以是小数&#xff0c;也可以是负数 //运算符float a1.0f;float b2.0f;float c-1.5f;System.out.println(a%b); //1.0System.out.println(a%c); //1.0 2.Java中除数不可以为0&#xff0c…

华为配置ARP安全综合功能实验

配置ARP安全综合功能示例 组网图形 图1 配置ARP安全功能组网图 ARP安全简介配置注意事项组网需求配置思路操作步骤配置文件 ARP安全简介 ARP&#xff08;Address Resolution Protocol&#xff09;安全是针对ARP攻击的一种安全特性&#xff0c;它通过一系列对ARP表项学习和A…

如何用MapTalks IDE来发布网站?

简介 MapTalks IDE 全称 MapTalks集成设计环境&#xff08;Integrated Design Environment&#xff09;&#xff0c;是由MapTalks技术团队开发的新一代web地图设计软件。 通过MapTalks IDE&#xff0c;您可以自由的创建二维和三维地图&#xff0c;在其中载入或创建地理数据&a…

Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践(二)

在上一篇文章中&#xff0c;我们成功验证了Intel Threading Building Blocks (TBB) 与 OpenMP 在多线程并行处理方面的加速潜力。为了更深入地理解这些技术在实际应用场景中的效能提升&#xff0c;接下来我们将目光转向目标开发板环境&#xff0c;进一步探究这两种框架在嵌入式…

Vue-49、Vue技术实现动画效果

1、首先&#xff0c;在Vue项目中的src/components文件夹下创建一个名为AnimatedBox.vue的文件。 2、编辑AnimatedBox.vue文件&#xff0c;添加以下代码&#xff1a; <template><div class"animated-box" click"toggle"><transition name&q…

文本生成高清、连贯视频,谷歌推出时空扩散模型

谷歌研究人员推出了创新性文本生成视频模型——Lumiere。 与传统模型不同的是&#xff0c;Lumiere采用了一种时空扩散&#xff08;Space-time&#xff09;U-Net架构&#xff0c;可以在单次推理中生成整个视频的所有时间段&#xff0c;能明显增强生成视频的动作连贯性&#xff…

Fiddler修改https请求与响应 bug修复变灰了选不了等 Fiddle对夜神模拟器抓包设置

不要修改别人的东西&#xff0c;不要修改别人的东西&#xff0c;不要修改别人的东西 只用于自己的网站&#xff0c;自己安全调试。 fiddler修改https请求 1、打到要改的请求 2、替换请求内容 3、开启捕获。操作产生请求。 4、fiddler里查看请求或响应数据 &#xff0c;确认成…

RK3588平台开发系列讲解(视频篇)H.264码流结构介绍

文章目录 一、 码流查看工具二、 I帧、 P帧、 B帧三、序列四、GOP, 即关键帧间隔五、片和宏块沉淀、分享、成长,让自己和他人都能有所收获!😄 📢H.264码流结构介绍。 一、 码流查看工具 ① H.264码流查看工具: Elecard_streamEye、 Elecard StreamEye Tools、 Special…

[嵌入式系统-7]:龙芯1B 开发学习套件 -4- LoongIDE 集成开发工具的使用-创建应用程序工程、编译、下载、调试

目录 前言&#xff1a; 步骤1&#xff1a;设置工作工作空间 步骤2&#xff1a;设置工具链 步骤3&#xff1a;创建裸机应用程序 步骤4&#xff1a;创建带实时操作系统的应用程序 步骤5&#xff1a;编译 步骤6&#xff1a;下载调试 前言&#xff1a; LoongIDE集成开发环境…

使用post-css实现移动端适配

介绍移动端适配以及适配方案 适配原因 移动端不像PC端,有足够大的屏幕展示较多的内容不同的移动端设备&#xff0c;有不同屏幕宽度同样大小的页面元素在不同屏幕宽度设备展示时&#xff0c;布局就会错乱有些元素没有展示在可视范围内有些元素不能撑满整个屏幕&#xf…

【保姆级教程】Windows11下go-zero的etcd安装与初步使用

【Go-Zero】Windows11下etcd的安装与初步使用 大家好 我是寸铁&#x1f44a; 总结了一篇Windows11下etcd的安装与初步使用的文章✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 前言&#xff1a; 在使用etcd 前&#xff0c;我们需要了解一下etcd 是什么&#xff0c;为什么使用etcd…

运维SRE-04 磁盘管理体系

磁盘管理体系详解 磁盘管理系统概述 目标 熟练掌握常用磁盘配置(容量,转速,个数)熟练说出来或写出来: raid级别熟练掌握磁盘基础使用:拿到一块硬盘到可以向硬盘写入数据分区,格式化,挂载熟练掌握: 磁盘空间不足 no space left on device 故障,原因,排查,解决. 磁盘基础内容 …

Spring Boot 中操作 Bean 的生命周期

1.InitializingBean和DisposableBean InitializingBean接口提供了afterPropertiesSet方法&#xff0c;用于在bean的属性设置好之后调用&#xff1b; DisposableBean接口提供了destroy方法&#xff0c;用于在bean销毁之后调用&#xff1b; public class TestComponent implem…

基于微服务的高考志愿智能辅助决策系统(附源码)

目录 一.引言 1、编写目的 2、系统功能概述 二.功能分析 三.微服务模块 1、微服务用户相关模块 &#xff08;1&#xff09;用户注册 &#xff08;2&#xff09;用户登录 &#xff08;3&#xff09;用户信息管理 &#xff08;4&#xff09;用户操作 2、微服务文件云存…

政安晨的机器学习笔记——跟着演练快速理解TensorFlow(适合新手入门)

准备工作 本笔记是假设您已经安装了Windows系统或Ubuntu系统的Anaconda&#xff08;或 Miniconda&#xff09;、Jupyter Notebook、TensorFLow&#xff0c;稍微了解Python语言&#xff0c;并可以进行一点点操作的基础上进行的。 如果您还不具备这个条件&#xff0c;去…