背景介绍
1,最近有一个大数据量插入的操作入库的业务场景,需要先做一些其他修改操作,然后在执行插入操作,由于插入数据可能会很多,用到多线程去拆分数据并行处理来提高响应时间,如果有一个线程执行失败,则全部回滚。
2,在spring中可以使用@Transactional
注解去控制事务,使出现异常时会进行回滚,在多线程中,这个注解则不会生效,如果主线程需要先执行一些修改数据库的操作,当子线程在进行处理出现异常时,主线程修改的数据则不会回滚,导致数据错误。
3,下面用一个简单示例演示多线程事务。
公用的类和方法
/**
* 平均拆分list方法.
* @param source
* @param n
* @param <T>
* @return
*/
public static <T> List<List<T>> averageAssign(List<T> source,int n){
List<List<T>> result=new ArrayList<List<T>>();
int remaider=source.size()%n;
int number=source.size()/n;
int offset=0;//偏移量
for(int i=0;i<n;i++){
List<T> value=null;
if(remaider>0){
value=source.subList(i*number+offset, (i+1)*number+offset+1);
remaider--;
offset++;
}else{
value=source.subList(i*number+offset, (i+1)*number+offset);
}
result.add(value);
}
return result;
}
/** 线程池配置
* @version V1.0
*/
public class ExecutorConfig {
private static int maxPoolSize = Runtime.getRuntime().availableProcessors();
private volatile static ExecutorService executorService;
public static ExecutorService getThreadPool() {
if (executorService == null){
synchronized (ExecutorConfig.class){
if (executorService == null){
executorService = newThreadPool();
}
}
}
return executorService;
}
private static ExecutorService newThreadPool(){
int queueSize = 500;
int corePool = Math.min(5, maxPoolSize);
return new ThreadPoolExecutor(corePool, maxPoolSize, 10000L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<>(queueSize),new ThreadPoolExecutor.AbortPolicy());
}
private ExecutorConfig(){}
}
/** 获取sqlSession
* @author 86182
* @version V1.0
*/
@Component
public class SqlContext {
@Resource
private SqlSessionTemplate sqlSessionTemplate;
public SqlSession getSqlSession(){
SqlSessionFactory sqlSessionFactory = sqlSessionTemplate.getSqlSessionFactory();
return sqlSessionFactory.openSession();
}
示例事务不成功操作
/**
* 测试多线程事务.
* @param employeeDOList
*/
@Override
@Transactional
public void saveThread(List<EmployeeDO> employeeDOList) {
try {
//先做删除操作,如果子线程出现异常,此操作不会回滚
this.getBaseMapper().delete(null);
//获取线程池
ExecutorService service = ExecutorConfig.getThreadPool();
//拆分数据,拆分5份
List<List<EmployeeDO>> lists=averageAssign(employeeDOList, 5);
//执行的线程
Thread []threadArray = new Thread[lists.size()];
//监控子线程执行完毕,再执行主线程,要不然会导致主线程关闭,子线程也会随着关闭
CountDownLatch countDownLatch = new CountDownLatch(lists.size());
AtomicBoolean atomicBoolean = new AtomicBoolean(true);
for (int i =0;i<lists.size();i++){
if (i==lists.size()-1){
atomicBoolean.set(false);
}
List<EmployeeDO> list = lists.get(i);
threadArray[i] = new Thread(() -> {
try {
//最后一个线程抛出异常
if (!atomicBoolean.get()){
throw new ServiceException("001","出现异常");
}
//批量添加,mybatisPlus中自带的batch方法
this.saveBatch(list);
}finally {
countDownLatch.countDown();
}
});
}
for (int i = 0; i <lists.size(); i++){
service.execute(threadArray[i]);
}
//当子线程执行完毕时,主线程再往下执行
countDownLatch.await();
System.out.println("添加完毕");
}catch (Exception e){
log.info("error",e);
throw new ServiceException("002","出现异常");
}finally {
connection.close();
}
}
数据库中存在一条数据: