go基础-垃圾回收+混合写屏障GC全分析

news2024/11/16 11:35:48

垃圾回收(Garbage Collection,简称GC)是编程语言中提供的自动的内存管理机制,自动释放不需要的对象,让出存储器资源,无需程序员手动执行。

Golang中的垃圾回收主要应用三色标记法,GC过程和其他用户goroutine可并发运行,但需要一定时间的STW(stop the world),STW的过程中,CPU不执行用户代码,全部用于垃圾回收,这个过程的影响很大,Golang进行了多次的迭代优化来解决这个问题。

一、Go V1.3之前的标记-清除(mark and sweep)算法

此算法主要有两个主要的步骤:

  • 标记(Mark phase)
  • 清除(Sweep phase)

第一步,暂停程序业务逻辑。

操作非常简单,但是有一点需要额外注意:mark and sweep算法在执行的时候,需要程序暂停!即 STW(stop the world)。也就是说,这段时间程序会卡在哪儿。

第二步, 开始标记,程序找出它所有可达的对象,并做上标记。如下图所示:

第三步, 标记完了之后,然后开始清除未标记的对象. 结果如下.

对象5,6不可达,被GC所清除

第四步, 停止暂停,让程序继续跑。然后循环重复这个过程,直到process程序生命周期结束。

二、标记-清扫(mark and sweep)的缺点

  • STW,stop the world;让程序暂停,程序出现卡顿 (重要问题)。
  • 标记需要扫描整个heap
  • 清除数据会产生heap碎片

所以Go V1.3版本之前就是以上来实施的, 流程是

Go V1.3 做了简单的优化,将STW提前, 减少STW暂停的时间范围.如下所示

这里面最重要的问题就是:mark-and-sweep 算法会暂停整个程序 。
Go是如何面对并这个问题的呢?接下来G V1.5版本 就用三色并发标记法来优化这个问题.

三、Go V1.5的三色并发标记法

三色标记法 实际上就是通过三个阶段的标记来确定清楚的对象都有哪些. 我们来看一下具体的过程.

第一步 , 就是只要是新创建的对象,默认的颜色都是标记为“白色”.

这里面需要注意的是, 所谓“程序”, 则是一些对象的跟节点集合.
所以上图,可以转换如下的方式来表示.

第二步, 每次GC回收开始, 然后从根节点开始遍历所有对象,把遍历到的对象从白色集合放入“灰色”集合。

第三步, 遍历灰色集合,将灰色对象引用的对象从白色集合放入灰色集合,之后将此灰色对象放入黑色集合

第四步, 重复第三步, 直到灰色中无任何对象.

第五步: 回收所有的白色标记表的对象. 也就是回收垃圾.

以上便是三色并发标记法, 不难看出,我们上面已经清楚的体现三色的特性, 那么又是如何实现并行的呢?

Go是如何解决标记-清除(mark and sweep)算法中的卡顿(stw,stop the world)问题的呢?

四、没有STW的三色标记法

我们还是基于上述的三色并发标记法来说, 他是一定要依赖STW的. 因为如果不暂停程序, 程序的逻辑改变对象引用关系, 这种动作如果在标记阶段做了修改,会影响标记结果的正确性。我们举一个场景.

如果三色标记法, 标记过程不使用STW将会发生什么事情?


可以看出,有两个问题, 在三色标记法中,是不希望被发生的

  • 条件1: 一个白色对象被黑色对象引用(白色被挂在黑色下)
  • 条件2: 灰色对象与它之间的可达关系的白色对象遭到破坏(灰色同时丢了该白色)

当以上两个条件同时满足时, 就会出现对象丢失现象!

当然, 如果上述中的白色对象3, 如果他还有很多下游对象的话, 也会一并都清理掉.

为了防止这种现象的发生,最简单的方式就是STW,直接禁止掉其他用户程序对对象引用关系的干扰,但是STW的过程有明显的资源浪费,对所有的用户程序都有很大影响,如何能在保证对象不丢失的情况下合理的尽可能的提高GC效率,减少STW时间呢?

答案就是, 那么我们只要使用一个机制,来破坏上面的两个条件就可以了.

五、屏障机制

我们让GC回收器,满足下面两种情况之一时,可保对象不丢失. 所以引出两种方式.

(1) “强-弱” 三色不变式

强三色不变式

不存在黑色对象引用到白色对象的指针。

弱三色不变式

所有被黑色对象引用的白色对象都处于灰色保护状态.

为了遵循上述的两个方式,Golang团队初步得到了如下具体的两种屏障方式“插入屏障”, “删除屏障”.

(2) 插入屏障

具体操作: 在A对象引用B对象的时候,B对象被标记为灰色。(将B挂在A下游,B必须被标记为灰色)

满足: 强三色不变式. (不存在黑色对象引用白色对象的情况了, 因为白色会强制变成灰色)

伪码如下:

  添加下游对象(当前下游对象slot, 新下游对象ptr) {   
  //1
  标记灰色(新下游对象ptr)   

  //2
  当前下游对象slot = 新下游对象ptr                   
}

场景:

A.添加下游对象(nil, B)   //A 之前没有下游, 新添加一个下游对象B, B被标记为灰色
A.添加下游对象(C, B)     //A 将下游对象C 更换为B,  B被标记为灰色

这段伪码逻辑就是写屏障,. 我们知道,黑色对象的内存槽有两种位置, . 栈空间的特点是容量小,但是要求相应速度快,因为函数调用弹出频繁使用, 所以“插入屏障”机制,在栈空间的对象操作中不使用. 而仅仅使用在堆空间对象的操作中.

接下来,我们用几张图,来模拟整个一个详细的过程, 希望您能够更可观的看清晰整体流程。

但是如果栈不添加,当全部三色标记扫描之后,栈上有可能依然存在白色对象被引用的情况(如上图的对象9). 所以要对栈重新进行三色标记扫描, 但这次为了对象不丢失, 要对本次标记扫描启动STW暂停. 直到栈空间的三色标记结束.


最后将栈和堆空间 扫描剩余的全部 白色节点清除. 这次STW大约的时间在10~100ms间.

(3) 删除屏障

具体操作: 被删除的对象,如果自身为灰色或者白色,那么被标记为灰色。

满足: 弱三色不变式. (保护灰色对象到白色对象的路径不会断)

伪代码:

添加下游对象(当前下游对象slot, 新下游对象ptr) {
  //1
  if (当前下游对象slot是灰色 || 当前下游对象slot是白色) {
        标记灰色(当前下游对象slot)     //slot为被删除对象, 标记为灰色
  }

  //2
  当前下游对象slot = 新下游对象ptr
}

场景:

A.添加下游对象(B, nil)   //A对象,删除B对象的引用。  B被A删除,被标记为灰(如果B之前为白)
A.添加下游对象(B, C)       //A对象,更换下游B变成C。   B被A删除,被标记为灰(如果B之前为白)

接下来,我们用几张图,来模拟整个一个详细的过程, 希望您能够更可观的看清晰整体流程。

这种方式的回收精度低,一个对象即使被删除了最后一个指向它的指针也依旧可以活过这一轮,在下一轮GC中被清理掉。

六、Go V1.8的混合写屏障(hybrid write barrier)机制

插入写屏障和删除写屏障的短板:

  • 插入写屏障:结束时需要STW来重新扫描栈,标记栈上引用的白色对象的存活;
  • 删除写屏障:回收精度低,GC开始时STW扫描堆栈来记录初始快照,这个过程会保护开始时刻的所有存活对象。

Go V1.8版本引入了混合写屏障机制(hybrid write barrier),避免了对栈re-scan的过程,极大的减少了STW的时间。结合了两者的优点。

(1) 混合写屏障规则

具体操作:

  • 1、GC开始将栈上的对象全部扫描并标记为黑色(之后不再进行第二次重复扫描,无需STW),
  • 2、GC期间,任何在栈上创建的新对象,均为黑色。
  • 3、被删除的对象标记为灰色。
  • 4、被添加的对象标记为灰色。

满足: 变形的弱三色不变式.

伪代码:

添加下游对象(当前下游对象slot, 新下游对象ptr) {
    //1 
        标记灰色(当前下游对象slot)    //只要当前下游对象被移走,就标记灰色

    //2 
    标记灰色(新下游对象ptr)

    //3
    当前下游对象slot = 新下游对象ptr
}

这里我们注意, 屏障技术是不在栈上应用的,因为要保证栈的运行效率。

(2) 混合写屏障的具体场景分析

接下来,我们用几张图,来模拟整个一个详细的过程, 希望您能够更可观的看清晰整体流程。

注意混合写屏障是Gc的一种屏障机制,所以只是当程序执行GC的时候,才会触发这种机制。

GC开始:扫描栈区,将可达对象全部标记为黑

场景一: 对象被一个堆对象删除引用,成为栈对象的下游

伪代码:

//前提:堆对象4->对象7 = 对象7;  //对象7 被 对象4引用
栈对象1->对象7 = 堆对象7//将堆对象7 挂在 栈对象1 下游
堆对象4->对象7 = null;    //对象4 删除引用 对象7

场景二: 对象被一个栈对象删除引用,成为另一个栈对象的下游

伪代码:

new 栈对象9;
对象8->对象3 = 对象3//将栈对象3 挂在 栈对象9 下游
对象2->对象3 = null;      //对象2 删除引用 对象3

场景三:对象被一个堆对象删除引用,成为另一个堆对象的下游

伪代码:

堆对象10->对象7 = 堆对象7//将堆对象7 挂在 堆对象10 下游
堆对象4->对象7 = null;         //对象4 删除引用 对象7

场景四:对象从一个栈对象删除引用,成为另一个堆对象的下游

伪代码:

堆对象10->对象7 = 堆对象7//将堆对象7 挂在 堆对象10 下游
堆对象4->对象7 = null;         //对象4 删除引用 对象7

Golang中的混合写屏障满足弱三色不变式,结合了删除写屏障和插入写屏障的优点,只需要在开始时并发扫描各个goroutine的栈,使其变黑并一直保持,这个过程不需要STW,而标记结束后,因为栈在扫描后始终是黑色的,也无需再进行re-scan操作了,减少了STW的时间。

七、总结

以上便是Golang的GC全部的标记-清除逻辑及场景演示全过程。

GoV1.3- 普通标记清除法,整体过程需要启动STW,效率极低。

GoV1.5- 三色标记法, 堆空间启动写屏障,栈空间不启动,全部扫描之后,需要重新扫描一次栈(需要STW),效率普通

GoV1.8-三色标记法,混合写屏障机制, 栈空间不启动,堆空间启动。整个过程几乎不需要STW,效率较高。

参考文章https://zhuanlan.zhihu.com/p/334999060

视频连接https://link.zhihu.com/?target=https%3A//www.bilibili.com/video/BV1wz4y1y7Kd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1420129.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【linux】-centos7版本前后-变化篇

1.centos7版本前后区别 首先文件系统变化,由EXT4,变为XFS格式。可支持容量500TB的文件,而6代仅能支持16TB。首个进程变为systemd, 替换了熟悉的init进程。它的特点是功能强大,体积也很强大。 systemd给我们带来了一个全家桶命令&…

ESP8266 传感器搭配 Node-RED实时显示数据,邮件告警 实验

前言 esp8266 12f,wif模块,接倾斜传感器,火焰传感器,烟雾传感器,水浸传感器,蜂鸣器。通过mqtt发布数据,并使用node-red实时获取数据,显示到页面上。并且通过邮件和页面两种方式报警。 需求如下: ①倾斜传感器:监测是否保持平衡。UI界面显示平衡度。如果不平衡,UI界…

【ArcGIS微课1000例】0099:土地利用变化分析

本实验讲述在ArcGIS软件中基于两期土地利用数据,做土地利用变化分析。 文章目录 一、实验描述二、实验过程三、注意事项一、实验描述 对城市土地利用情况进行分析时,需要考虑不同时期土地利用图层在空间上的差异性,如农用地转建筑用地的空间变化。而该变化过程表现为各时期…

Sentinel之道:流控模式解析与深度探讨

欢迎来到我的博客,代码的世界里,每一行都是一个故事 Sentinel之道:流控模式解析与深度探讨 前言流控模式基础:Sentinel的多面光环直接模式:规则之箭,直指核心直接模式的核心概念:实际案例演示&a…

STM32——I2C

通信协议见(STM32——SPI) 一、I2C协议 1.1 I2C协议介绍; I2C是(Inter IC Bus)是由Philips公司开发的一种通用数据总线; 有多根通信线; 一根SDA(串行通信线)&#xf…

如何用Docker+jenkins 运行 python 自动化?

1.在 Linux 服务器安装 docker 2.创建 jenkins 容器 3.根据自动化项目依赖包构建 python 镜像(构建自动化 python 环境) 4.运行新的 python 容器,执行 jenkins 从仓库中拉下来的自动化项目 5.执行完成之后删除容器 前言 环境准备 Linux 服务器一台(我的是 CentOS7)…

解析Go语言中HTTP代理的请求和响应过程

在Go语言中,构建一个HTTP代理服务器其实非常简单。那么,当你发送一个请求给代理服务器时,代理服务器到底做了哪些事情呢? 首先,当你向代理服务器发送一个HTTP请求时,代理服务器会先接收到这个请求。这个请…

Android中属性property_get和property_set的详细用法介绍

1,property_get和property_set的作用说明 在Android操作系统中,property_get和property_set是用于获取和设置系统属性的函数。这些属性通常用于存储和读取配置信息,例如设备配置、网络设置、系统参数等。 property_get函数用于获取指定属性…

spring-bus消息总线的使用

文章目录 依赖bus应用接口用到的封装参数类 接收的应用监听器定义的事件类 使用bus定义bus远程调用A应用数据更新后通过bus数据同步给B应用 依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-bus-amqp…

51单片机通过级联74HC595实现倒计时秒表Protues仿真设计

一、设计背景 近年来随着科技的飞速发展&#xff0c;单片机的应用正在不断的走向深入。本文阐述了51单片机通过级联74HC595实现倒计时秒表设计&#xff0c;倒计时精度达0.05s&#xff0c;解决了传统的由于倒计时精度不够造成的误差和不公平性&#xff0c;是各种体育竞赛的必备设…

一家企业需要CRM,通常有以下这些迹象

CRM软件是一个集成的套件——通常是——云应用程序&#xff0c;例如营销云、销售云和服务云&#xff0c;用于收集和存储客户数据。它为销售团队提供了一个集中的平台来管理客户交互并确定活动的优先级&#xff0c;这样客户就不会感到被忽视&#xff0c;从而提升了他们的客户体验…

Flask使用Jinja2渲染模版使用变量实战

前言&#xff1a; Flask 使用 Jinja2 作为其默认模板引擎&#xff0c;这意味着您可以直接在 Flask 应用程序中使用 Jinja2 模板。您可以创建模板文件&#xff0c;然后在视图函数中渲染这些模板&#xff0c;将动态数据传递给模板进行渲染&#xff0c;并最终生成最终的 HTML 页面…

mcu专用看门狗复位芯片(如MAX706)

mcu专用看门狗复位芯片&#xff08;如MAX706&#xff09; 为什么要使用电压复位芯片RESET引脚WDO引脚MR引脚WDI引脚 国产替代型号应用电路1 推荐电路&#xff08;用一个跳线帽使能/关闭看门狗功能&#xff0c;调试MCU时防止看门狗芯片随便触发复位功能&#xff09;&#xff0c;…

ChatGPT PLUS升级步骤--支付宝、微信

AI伴随着我们已经有一年多了&#xff0c;这一年多里我使用ChatGPT做ppt、生成绘画、写文案、做旅游攻略&#xff0c;还有一些医学知识&#xff0c;医学知识我感觉没有回答的很好&#xff0c;对比于医生给的建议我个人觉得还是医生的比较好&#xff0c;Chat GPT回答的比较官方 …

【极数系列】Flink集成DataSource读取文件数据(08)

文章目录 01 引言02 简介概述03 基于文件读取数据3.1 readTextFile(path)3.2 readFile(fileInputFormat, path)3.3 readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo)3.4 实现原理3.5 注意事项3.6 支持读取的文件形式 04 源码实战demo4.1 pom.xml依…

ROS学习笔记11——ROS中的重名问题

一、ros功能包重名——ros工作空间覆盖 功能包重名时&#xff0c;会按照 ROS_PACKAGE_PATH 查找&#xff0c;在前的会优先执行。ROS 会解析 .bashrc 文件&#xff0c;并生成 ROS_PACKAGE_PATH ROS包路径&#xff0c;即调用功能包的顺序&#xff0c;该变量中按照 .bashrc 中配置…

leetcode—跳跃游戏—贪心算法

1 跳跃游戏1 给你一个非负整数数组 nums &#xff0c;你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标&#xff0c;如果可以&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&a…

图像畸变校正(2)

畸变校正是一种用于矫正图像或视频中的失真或畸变的技术。这种失真通常是由摄像头镜头的特性或角度造成的&#xff0c;可能会导致图像中的对象形状、大小或位置不准确。以下是畸变校正的一般方法&#xff1a; 摄像头模型建立&#xff1a; 首先&#xff0c;需要建立摄像头的模型…

【React教程】(1) React简介、React核心概念、React初始化

目录 ReactReact 介绍React 特点React 的发展历史React 与 Vue 的对比技术层面开发团队社区Native APP 开发 相关资源链接 EcmaScript 6 补充React 核心概念组件化虚拟 DOM 起步初始化及安装依赖Hello World React React 介绍 React 是一个用于构建用户界面的渐进式 JavaScrip…

海外云手机为什么吸引用户?

近年来&#xff0c;随着全球化的飞速发展&#xff0c;海外云手机逐渐成为各行各业关注的焦点。那么&#xff0c;究竟是什么让海外云手机如此吸引用户呢&#xff1f;本文将深入探讨海外云手机的三大吸引力&#xff0c;揭示海外云手机的优势所在。 1. 高效的社交媒体运营 海外云…