redis—Zset有序集合

news2024/11/16 19:59:21

目录

前言

1.常见命令

2.使用场景

3.渐进式遍历

4.数据库管理


前言

有序集合相对于字符串、列表、哈希、集合来说会有一-些陌生。它保留了集合不能有重复成员的
特点,但与集合不同的是,有序集合中的每个元素都有-个唯- -的浮 点类型的分数(score) 与之关
联,着使得有序集合中的元素是可以维护有序性的,但这个有序不是用下标作为排序依据而是用这个分数。如图2-26所示,该有序集合显示了三国中的武将的武力。
图2-26有序集合

有序集合提供了获取指定分数和元素范围查找、计算成员排名等功能,合理地利用有序集合,可
以帮助我们在实际开发中解决很多问题。
有序集合中的元素是不能重复的,但分数允许重复。类比于一次考试之后,每个人一定有一
个唯一的分数,但分数允许相同。

表2-7列表、集合、有序集合三者的异同点。

1.常见命令

ZADD
添加或者更新指定的元素以及关联的分数到zset中,分数应该符合double类型,+inf/-inf 作为正负
极限也是合法的。
ZADD的相关选项:
●XX:仅仅用于更新已经存在的元素,不会添加新元素。
●NX: 仅用于添加新元素,不会更新已经存在的元素。
●CH: 默认情况下,ZADD返回的是本次添加的元素个数,但指定这个选项之后,就会还包含本次更新的元素的个数。
●INCR: 此时命令类似ZINCRBY的效果,将元素的分数加上指定的分数。此时只能指定一个元素和
分数。
语法:

ZADD key [NX | XX] [GT | LT] [CH] [INCR] score member [score member
...]

命令有效版本: 1.2.0之后
时间复杂度: O(log(N))
返回值:本次添加成功的元素个数。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 1 "uno"
(integer) 1
redis> ZADD myzset 2 "two" 3 "three"
(integer) 2
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "one"
2) "1"
3) "uno"
4) "1"
5) "two"
6) "2"
7) "three"
8) "3"
redis> ZADD myzset 10 one 20 two 30 three
(integer) 0
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "uno"
2) "1"
3) "one"
4) "10"
5) "two"
6) "20"
7) "three"
8) "30"
redis> ZADD myzset CH 100 one 200 two 300 three
(integer) 3
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "uno"
2) "1"
3) "one"
4) "100"
5) "two"
6) "200"
7) "three"
8) "300"
redis> ZADD myzset XX 1 one 2 two 3 three 4 four 5 five
(integer) 0
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "one"
2) "1"
3) "uno"
4) "1"
5) "two"
6) "2"
7) "three"
8) "3"
redis> ZADD myzset NX 100 one 200 two 300 three 400 four 500 five
(integer) 2
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "one"
2) "1"
3) "uno"
4) "1"
5) "two"
6) "2"
7) "three"
8) "3"
9) "four"
10) "400"
11) "five"
12) "500"
redis> ZADD myzset INCR 10 one
"11"
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "uno"
2) "1"
3) "two"
4) "2"
5) "three"
6) "3"
7) "one"
8) "11"
9) "four"
10) "400"
11) "five"
12) "500"
redis> ZADD myzset -inf "negative infinity" +inf "positive infinity"
(integer) 2
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "negative infinity"
2) "-inf"
3) "uno"
4) "1"
5) "two"
6) "2"
7) "three"
8) "3"
9) "one"
10) "11"
11) "four"
12) "400"
13) "five"
14) "500"
15) "positive infinity"
16) "inf"

ZCARD
获取一个zset的基数(cardinality) ,即zset中的元素个数。
语法:

ZCARD key 

命令有效版本: 1.2.0之后
时间复杂度: 0(1)
返回值: zset 内的元素个数。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZCARD myzset
(integer) 2

ZCOUNT
返回分数在min和max之间的元素个数,默认情况下,min 和max都是包含的,可以通过(排除。
语法:

ZCOUNT key min max 

命令有效版本: 2.0.0之后
时间复杂度: O(log(N))
返回值:满足条件的元素列表个数。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZCOUNT myzset -inf +inf
(integer) 3
redis> ZCOUNT myzset 1 3
(integer) 3
redis> ZCOUNT myzset (1 3
(integer) 2
redis> ZCOUNT myzset (1 (3
(integer) 1

ZRANGE .
返回指定区间里的元素,分数按照升序。带上WITHSCORES可以把分数也返回。
语法:

ZRANGE key start stop [WITHSCORES] 

此处的[start, stop]为下标构成的区间从0开始,支持负数.
命令有效版本: 1.2.0之后
时间复杂度: O(log(N)+M)
返回值:区间内的元素列表。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "one"
2) "1"
3) "two"
4) "2"
5) "three"
6) "3"
redis> ZRANGE myzset 0 -1
1) "one"
2) "two"
3) "three"
redis> ZRANGE myzset 2 3
1) "three"
redis> ZRANGE myzset -2 -1
1) "two"
2) "three"

ZREVRANGE
返回指定区间里的元素,分数按照降序。带_ 上WITHSCORES可以把分数也返回。
备注:这个命令可能在6.2.0之后废弃,并且功能合并到ZRANGE中。
语法:

ZREVRANGE key start stop [WITHSCORES] 

命令有效版本: 1.2.0 之后
时间复杂度: O(log(N)+M)
返回值:区间内的元素列表。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZREVRANGE myzset 0 -1 WITHSCORES
1) "three"
2) "3"
3) "two"
4) "2"
5) "one"
6) "1"
redis> ZREVRANGE myzset 0 -1
1) "three"
2) "two"
3) "one"
redis> ZREVRANGE myzset 2 3
1) "one"
redis> ZREVRANGE myzset -2 -1
1) "two"
2) "one"

ZRANGEBYSCORE
返回分数在min和max之间的元素,默认情况下,min 和max都是包含的,可以通过(排除。
备注:这个命令可能在6.2.0之后废弃,并且功能合并到ZRANGE中。
语法:

ZRANGEBYSCORE key min max [WITHSCORES] 

命令有效版本: 1.0.5之后
时间复杂度: O(log(N)+M)
返回值:区间内的元素列表。
示例: 

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZRANGEBYSCORE myzset -inf +inf
1) "one"
2) "two"
3) "three"
redis> ZRANGEBYSCORE myzset 1 2
1) "one"
2) "two"
redis> ZRANGEBYSCORE myzset (1 2
1) "two"
redis> ZRANGEBYSCORE myzset (1 (2
(empty array)

ZPOPMAX
删除并返回分数最高的count个元素。
语法:

ZPOPMAX key [count] 

命令有效版本:5.0.0 之后

时间复杂度: 0(log(N)* M)

返回值:分数和元素列表。示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZPOPMAX myzset
1) "three"
2) "3" 

BZPOPMAX
ZPOPMAX的阻塞版本。
语法:

BZPOPMAX key [key ...] timeout 

命令有效版本: 5.0.0之后
时间复杂度: O(log(N))
返回值:元素列表。
示例: 

redis> DEL zset1 zset2
(integer) 0
redis> ZADD zset1 0 a 1 b 2 c
(integer) 3
redis> BZPOPMAX zset1 zset2 0
1) "zset1"
2) "c"
3) "2"

ZPOPMIN
删除并返回分数最低的count个元素。
语法:

ZPOPMIN key [count] 

命令有效版本: 5.0.0之后
时间复杂度: O(log(N) * M)
返回值:分数和元素列表。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZPOPMIN myzset
1) "one"
2) "1"

BZPOPMIN
ZPOPMIN的阻塞版本。
语法:

BZPOPMIN key [key ...] timeout 

命令有效版本: 5.0.0之后
时间复杂度: O(log(N))
返回值:元素列表。
示例:

redis> DEL zset1 zset2
(integer) 0
redis> ZADD zset1 0 a 1 b 2 c
(integer) 3
redis> BZPOPMIN zset1 zset2 0
1) "zset1"
2) "a"
3) "0"

ZRANK
返回指定元素的排名,升序。
语法:

ZRANK key member 

命令有效版本: 2.0.0 之后
时间复杂度: 0(log(N))
返回值:排名。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZRANK myzset "three"
(integer) 2
redis> ZRANK myzset "four"
(nil)

ZREVRANK
返回指定元素的排名,降序。
语法:

ZREVRANK key member

命令有效版本: 2.0.0之后
时间复杂度: 0(log(N))
返回值:排名。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZREVRANK myzset "one"
(integer) 2
redis> ZREVRANK myzset "four"
(nil)

ZSCORE
返回指定元素的分数。
语法:

ZSCORE key member 

命令有效版本: 1.2.0之后
时间复杂度: 0(1)
返回值:分数。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZSCORE myzset "one"
"1"

ZREM
删除指定的元素。
语法:

ZREM key member [member ...]

命令有效版本: 1.2.0之后
时间复杂度: 0(M*log(N))
返回值:本次操作删除的元素个数。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZREM myzset "two"
(integer) 1
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "one"
2) "1"
3) "three"
4) "3"

ZREMRANGEBYRANK
按照排序,升序删除指定范围的元素,左闭右闭。
语法:

ZREMRANGEBYRANK key start stop 

命令有效版本: 2.0.0之后
时间复杂度: O(log(N)+M)
返回值:本次操作删除的元素个数。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZREMRANGEBYRANK myzset 0 1
(integer) 2
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "three"
2) "3"

ZREMRANGEBYSCORE
按照分数删除指定范围的元素,左闭右闭。
语法:

ZREMRANGEBYSCORE key min max 

命令有效版本: 1.2.0之后.
时间复杂度: O(log(N)+M) .
返回值:本次操作删除的元素个数。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZADD myzset 3 "three"
(integer) 1
redis> ZREMRANGEBYSCORE myzset -inf (2
(integer) 1
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "two"
2) "2"
3) "three"
4) "3"

ZINCRBY
为指定的元素的关联分数添加指定的分数值。
语法:

ZINCRBY key increment member 

命令有效版本: 1.2.0之后
时间复杂度: O(log(N))
返回值:增加后元素的分数。
示例:

redis> ZADD myzset 1 "one"
(integer) 1
redis> ZADD myzset 2 "two"
(integer) 1
redis> ZINCRBY myzset 2 "one"
"3"
redis> ZRANGE myzset 0 -1 WITHSCORES
1) "two"
2) "2"
3) "one"
4) "3"

集合间操作
图2-27有序集合的交集操作

求出给定有序集合中元素的交集并保存进目标有序集合中,在合并过程中以元素为单位进行合并,元素对应的分数按照不同的聚合方式和权重得到新的分数。

语法:

ZINTERSTORE destination numkeys key [key ...] [WEIGHTS weight
[weight ...]] [AGGREGATE <SUM | MIN | MAX>]

命令有效版本: 2.0.0之后
时间复杂度: O(N*K)+O(M*log(M)) N 是输入的有序集合中,最小的有序集合的元素个数; K是输入了几个有序集合; M是最终结果的有序集合的元素个数.
返回值:目标集合中的元素个数
示例:

redis> ZADD zset1 1 "one"
(integer) 1
redis> ZADD zset1 2 "two"
(integer) 1
redis> ZADD zset2 1 "one"
(integer) 1
redis> ZADD zset2 2 "two"
(integer) 1
redis> ZADD zset2 3 "three"
(integer) 1
redis> ZINTERSTORE out 2 zset1 zset2 WEIGHTS 2 3
(integer) 2
redis> ZRANGE out 0 -1 WITHSCORES
1) "one"
2) "5"
3) "two"
4) "10"

图2-28有序集合的并集操作

ZUNIONSTORE
求出给定有序集合中元素的并集并保存进目标有序集合中,在合并过程中以元素为单位进行合并,元素对应的分数按照不同的聚合方式和权重得到新的分数。
语法:

ZUNIONSTORE destination numkeys key [key ...] [WEIGHTS weight
[weight ...]] [AGGREGATE <SUM | MIN | MAX>]

命令有效版本: 2.0.0之后
时间复杂度: 0(N)+O(M*log(M)) N是输入的有序集合总的元素个数; M是最终结果的有序集合的元素
个数.返回值:目标集合中的元素个数
示例:

redis> ZADD zset1 1 "one"
(integer) 1
redis> ZADD zset1 2 "two"
(integer) 1
redis> ZADD zset2 1 "one"
(integer) 1
redis> ZADD zset2 2 "two"
(integer) 1
redis> ZADD zset2 3 "three"
(integer) 1
redis> ZUNIONSTORE out 2 zset1 zset2 WEIGHTS 2 3
(integer) 3
redis> ZRANGE out 0 -1 WITHSCORES
1) "one"
2) "5"
3) "three"
4) "9"
5) "two"
6) "10"

命令小结
表2-8有序集合命令

内部编码
有序集合类型的内部编码有两种:
●ziplist (压缩列表) :当有序集合的元素个数小于zset- max -ziplist-entries配置(默认128个)
同时每个元素的值都小于zset-max-ziplist-value配置(默认64字节)时,Redis 会用ziplist来作
为有序集合的内部实现,ziplist 可以有效减少内存的使用。
●skiplist (跳表) :当ziplist条件不满足时,有序集合会使用skiplist作为内部实现,因为此时
ziplist的操作效率会下降。
1)当元素个数较少且每个元素较小时,内部编码为ziplist:

127.0.0.1:6379> zadd zsetkey 50 e1 60 e2 30 e3
(integer) 3
127.0.0.1:6379> object encoding zsetkey
"ziplist"

2)当元素个数超过128个,内部编码skiplist: 

127.0.0.1:6379> zadd zsetkey 50 e1 60 e2 30 e3 ... 省略 ... 82 e129
(integer) 129
127.0.0.1:6379> object encoding zsetkey
"skiplist"

3)当某个元素大于64字节时,内部编码skiplist:

127.0.0.1:6379> zadd zsetkey 50 "one string bigger than 64 bytes ... 省略 ..."
(integer) 1
127.0.0.1:6379> object encoding zsetkey
"skiplist"

2.使用场景

有序集合比较典型的使用场景就是排行榜系统。例如常见的网站上的热榜信息,榜单的维度可能
是多方面的:按照时间、按照阅读量、按照点赞量。本例中我们使用点赞数这个维度,维护每天的热
榜:
1)添加用户赞数
例如用户james发布了一篇文章,并获得3个赞,可以使用有序集合的zadd和zincrby功能:

zadd user:ranking:2022-03-15 3 james 

之后如果再获得赞,可以使用zincrby:

zincrby user:ranking:2022-03-15 1 james 

2)取消用户赞数
由于各种原因(例如用户注销、用户作弊等)需要将用户删除,此时需要将用户从榜单中删除掉,可
以使用zrem。例如删除成员tom:

zrem user:ranking:2022-03-15 tom 

3)展示获取赞数最多的10个用户
此功能使用zrevrange命令实现: 

zrevrangebyrank user:ranking:2022-03-15 0 9 

4)展示用户信息以及用户分数
此功能将用户名作为键后缀,将用户信息保存在哈希类型中,至于用户的分数和排名可以使用zscore和zrank来实现。

hgetall user:info:tom
zscore user:ranking:2022-03-15 mike
zrank user:ranking:2022-03-15 mike

3.渐进式遍历

Redis使用scan命令进行渐进式遍历键,进而解决直接使用keys获取键时可能出现的阻塞问题。每次scan命令的时间复杂度是0(1),但是要完整地完成所有键的遍历,需要执行多次scan。整个过程如图2-29所示。
图2-29 scan命令渐进式遍历

首次scan从0开始.
当scan返回的下次位置为0时,遍历结束.

SCAN
以渐进式的方式进行键的遍历。
语法:

SCAN cursor [MATCH pattern] [COUNT count] [TYPE type] 

命令有效版本: 2.8.0之后
时间复杂度: 0(1)
返回值:下一次scan的游标(cursor) 以及本次得到的键。
示例:

127.0.0.1:6379> scan 0
1) "10"
2)  1) "counter"
    2) "myzset"
    3) "setkey"
    4) "lastname"
    5) "myset1"
    6) "keys"
    7) "key2"
    8) "mylist"
    9) "zset2"
   10) "age"
127.0.0.1:6379> scan 17
1) "0"
2) 1) "firstname"
   2) "hello"
   3) "myset"
   4) "key3"
   5) "mhash2"
   6) "mykey"
   7) "out"
   8) "mhash1"
   9) "myhash"

除了scan以外,Redis 面向哈希类型、集合类型、有序集合类型分别提供了hscan、sscan、 zscan 命令,它们的用法和scan基本类似,感兴趣的读者可以自行做扩展学习。
渐进性遍历scan虽然解决了阻塞的问题,但如果在遍历期间键有所变化(增加、修改、删除),可能导致遍历时键的重复遍历或者遗漏,这点务必在实际开发中考虑。

4.数据库管理

Redis提供了几个面向Redis数据库的操作,分别是dbsize、select、 flushdb、 flushall 命令,
本机将通过具体的使用常见介绍这些命令。

切换数据库

select dbIndex 

许多关系型数据库,例如MySQL支持在一个实例下有多个数据库存在的,但是与关系型数据库用
字符来区分不同数据库名不同,Redis 只是用数字作为多个数据库的实现。Redis 默认配置中是有16 个数据库。select 0操作会切换到第一个数据库,select 15会切换到最后一个数据库。0号数据库和15号数据库保存的数据是完全不冲突的(如图2-30所示), 即各种有各自的键值对。默认情况下,我们处于数据库0。

redis管理的数据库

Redis中虽然支持多数据库,但随着版本的升级,其实不是特别建议使用多数据库特性。如
果真的需要完全隔离的两套键值对,更好的做法是维护多个Redis实例,而不是在一个
Redis实例中维护多数据库。这是因为本身Redis并没有为多数据库提供太多的特性,其次
无论是否有多个数据库,Redis 都是使用单线程模型,所以彼此之间还是需要排队等待命令
的执行。同时多数据库还会让开发、调试和运维工作变得复杂。所以实践中,始终使用数据
库0其实是一个很好的选择。

清除数据库
flushdb / flushall命令用于清除数据库,区别在于flushdb只清除当前数据库,flushall 会清楚所有数
据库。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1419987.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

c语言常量详解 全

c语言常量详解 全 一 常量的基本概念及分类二 常量的存储方式三 c语言常量和变量的具体区别四 字面常量详解4.1 常见类型的字面常量及其示例&#xff1a;4.2 字面常量的使用情况4.3 字面常量的优点 五 const 关键字常量详解5.1 const关键字在C语言中的使用情况&#xff1a;5.2 …

山海鲸可视化大屏:引领企业洞悉市场,提升客户价值的秘密武器

随着大数据时代的到来&#xff0c;企业面临着前所未有的机遇与挑战。如何从海量数据中挖掘出有价值的信息&#xff0c;洞察市场趋势&#xff0c;提升客户价值&#xff0c;成为了企业发展的重要课题。山海鲸可视化企业客户价值分析大屏&#xff0c;为企业提供了一个全新的解决方…

利用外卖系统源码构建高效的在线订餐平台

在当今数字化时代&#xff0c;外卖服务已成为人们日常生活中不可或缺的一部分。为了满足用户需求&#xff0c;许多创业者和企业都希望搭建自己的在线订餐平台。利用现有的外卖系统源码&#xff0c;可以快速构建一个高效、安全的在线订餐平台。本文将介绍如何利用外卖系统源码来…

播报 | 天空卫士入围FreeBuf《CCSIP 2023中国网络安全产业全景图》16个细分领域

2024年1月24&#xff0c;国内安全行业门户FreeBuf旗下FreeBuf咨询正式发布《CCSIP 2023中国网络安全产业全景图》&#xff08;第六版&#xff09;。 天空卫士成功入围SASE、数据防泄露&#xff08;DLP&#xff09;、分类分级、数据安全治理(解决方案)、数据安全管控&#xff08…

Django问题报错:Cannot resolve keyword ‘name‘ into field. Choices are: course, id

笔者在进行登录注册实验用户名已经注册过的操作时报错 一、错误位置 二、问题原因 使用Student模型时参数名错误 三、解决办法 修改为与Student模型中对应的参数名,问题解决

每日一题 力扣514自由之路

514. 自由之路 题目描述&#xff1a; 电子游戏“辐射4”中&#xff0c;任务 “通向自由” 要求玩家到达名为 “Freedom Trail Ring” 的金属表盘&#xff0c;并使用表盘拼写特定关键词才能开门。 给定一个字符串 ring &#xff0c;表示刻在外环上的编码&#xff1b;给定另一…

插值(Python)

插值 插值是数学和计算机科学领域中的一种技术&#xff0c;用于在给定一些离散数据点的情况下&#xff0c;估计在这些点之间的数值。插值的目标是通过某种函数&#xff08;插值函数&#xff09;来逼近或拟合这些离散数据&#xff0c;从而使得在原始数据点之间的数值也有合理的估…

物流信息网

技术架构&#xff1a; JSPMySQL 功能描述&#xff1a; 物流信息网主要用于实现网上自主物流&#xff0c;基本功能包括&#xff1a;登录、查询、时效查询、价格查询、注册等。本系统结构如下&#xff1a; &#xff08;1&#xff09;普通用户&#xff1a; 登录&#xff1a…

GIS毕业的那10000人,你们都在做什么?

根据阳光高考网&#xff08;教育部指定高校招生平台&#xff09;的数据显示&#xff0c;截止到2022年12月31日&#xff0c;全国高校GIS&#xff08;地理信息科学&#xff09;本科毕业生人数为&#xff1a;9000-10000人。 我们还可以看到&#xff0c;地信专业的男女比例为&#…

强化学习原理python篇06(拓展)——DQN拓展

强化学习原理python篇06&#xff08;拓展&#xff09;——DQN拓展 n-steps代码结果 Double-DQN代码结果 Dueling-DQN代码结果 Ref 拓展篇参考赵世钰老师的教材和Maxim Lapan 深度学习强化学习实践&#xff08;第二版&#xff09;&#xff0c;请各位结合阅读&#xff0c;本合集只…

nginx负载均衡案例

大家好今天给大家带来nginx负载均衡实验案例,首大家先看一下我的各类版本信息。&#xff08;还有两台设备信息相同就不展示了&#xff09; 一&#xff0c;搭建nginx环境 ❶首先创建Nginx的目录并进入&#xff1a; [rootlocalhost]# mkdir /soft && mkdir /soft/nginx…

Python qt.qpa.xcb: could not connect to display解决办法

遇到问题&#xff1a;qt.qpa.xcb: could not connect to display 解决办法&#xff0c;在命令行输入&#xff1a; export DISPLAY:0 然后重新跑python程序&#xff0c;解决&#xff01; 参考博客&#xff1a;qt.qpa.xcb: could not connect to displayqt.qpa.plugin: Could …

内核和进程的内存管理,内核从buddy到alloc到slab到kmalloc,内核的内核栈和中断处理程序栈,进程的虚拟内存到页表

内核中的内存管理 内核把物理页作为内存管理的基本单位&#xff0c;尽管处理器最小寻址单位为字&#xff0c;但是MMU&#xff08;管理内存并且把虚拟地址转换为物理地址的硬件&#xff09;通常以页为单位进行处理。 每个物理页面都由一个相应的 struct page 结构来表示&#…

打造高效经营:开发连锁餐饮管理系统的技术深度解析

为了适应市场的快速发展和提高经营效率&#xff0c;许多连锁餐饮企业纷纷投入开发连锁餐饮管理系统。 一、数字化转型的动力 传统的餐饮经营面临着诸多挑战&#xff0c;如订单管理、库存控制、人力资源等问题。在这样的背景下&#xff0c;连锁餐饮企业迫切需要一种全面而高效…

jenkins pipeline配置maven可选参数

1、在Manage Jenkins下的Global Tool Configuration下对应的maven项添加我们要用得到的不同版本的maven安装项 2、pipeline文件内容具体如下 我们maven是单一的&#xff0c;所以我们都是配置单选参数 pipeline {agent anyparameters {gitParameter(name: BRANCH_TAG, type: …

【智能家居入门之微信小程序控制下位机】(STM32、ONENET云平台、微信小程序、HTTP协议)

实现微信小程序控制单片机外设动作 一、使用ONENET可视化组件控制单片机外设动作二、使用微信小程序控制单片机外设动作三、总结 本篇博客话接上文&#xff1a; https://blog.csdn.net/m0_71523511/article/details/135892908 上一篇博客实现了微信小程序接收单片机上传的数据…

web wifi配网和模式切换-esp8266和esp32

web wifi配网和模式切换-esp8266和esp32 支持模式:1:tcp client() 2:tcp server 3:http server(POST/GET) 4:http client 5:udp,6:factory,7:mqtt 配网进入方式&#xff1a; 开机&#xff0c;指示灯亮起后(需要灯闪烁3下后)&#xff0c;需在3s内&#xff08;超过3s则会正常启动…

【网络】 WireShark实现TCP三次握手和四次挥手

目录 一、WireShark介绍 二、什么是TCP 三、TCP三次握手 四、TCP四次挥手 一、WireShark介绍 WireShark是一个开源的网络分析工具&#xff0c;用于捕获和分析网络数据包。它可以在多个操作系统上运行&#xff0c;包括Windows、Mac OS和Linux。 使用WireShark&#xff0c;…

获取鼠标点击图片时候的坐标,以及利用html 中的useMap 和area 实现图片固定位置的点击事件

一 编写原因 应项目要求&#xff0c;需要对图片的固定几个位置分别做一个点击事件&#xff0c;响应不同的操作&#xff0c;如下图&#xff0c;需要点击红色区域&#xff0c;弹出不同的提示框&#xff1a; 二 获取点击图片时候的坐标 1. 说明 实现这以上功能的前提是需要确定需…

Kubenetes Ingress 用法

Service的表现形式为IP地址端口号的方式&#xff0c;即工作在TCP/IP层&#xff0c;而对于基于HTTP的服务来说&#xff0c;Service机制很难实现&#xff0c;7层应用的复杂转发逻辑。kubenetes在1.1版本开始引入ingress资源对象&#xff0c;用于将集群外部的客户端请求路由到集群…