文章目录
- 142. 环形链表 II
- 题目描述
- 解题思路
- 判断链表是否有环
- 如果有环,如何找到这个环的入口
- c++代码
142. 环形链表 II
题目描述
给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
不允许修改 链表。
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。
提示:
- 链表中节点的数目范围在范围 [0, 104] 内
- -105 <= Node.val <= 105
- pos 的值为 -1 或者链表中的一个有效索引
进阶:你是否可以使用 O(1) 空间解决此题?
解题思路
这道题目,不仅考察对链表的操作,而且还需要一些数学运算。
主要考察两知识点:
- 判断链表是否环
- 如果有环,如何找到这个环的入口
判断链表是否有环
可以使用快慢指针法,分别定义 fast 和 slow 指针,从头结点出发,fast指针每次移动两个节点,slow指针每次移动一个节点,如果 fast 和 slow指针在途中相遇 ,说明这个链表有环。
为什么fast 走两个节点,slow走一个节点,有环的话,一定会在环内相遇呢,而不是永远的错开呢
首先第一点:fast指针一定先进入环中,如果fast指针和slow指针相遇的话,一定是在环中相遇,这是毋庸置疑的。
那么来看一下,为什么fast指针和slow指针一定会相遇呢?
可以画一个环,然后让 fast指针在任意一个节点开始追赶slow指针。
会发现最终都是这种情况, 如下图:
fast和slow各自再走一步, fast和slow就相遇了
这是因为fast是走两步,slow是走一步,其实相对于slow来说,fast是一个节点一个节点的靠近slow的,所以fast一定可以和slow重合。
动画如下:
如果有环,如何找到这个环的入口
此时已经可以判断链表是否有环了,那么接下来要找这个环的入口了。
假设从头结点到环形入口节点 的节点数为x。 环形入口节点到 fast指针与slow指针相遇节点 节点数为y。 从相遇节点 再到环形入口节点节点数为 z。 如图所示:
那么相遇时: slow指针走过的节点数为: x + y
, fast指针走过的节点数:x + y + n (y + z)
,n为fast指针在环内走了n圈才遇到slow指针, (y+z)为 一圈内节点的个数A。
因为fast指针是一步走两个节点,slow指针一步走一个节点, 所以 fast指针走过的节点数 = slow指针走过的节点数 * 2:
(x + y) * 2 = x + y + n (y + z)
两边消掉一个(x+y): x + y = n (y + z)
因为要找环形的入口,那么要求的是x,因为x表示 头结点到 环形入口节点的的距离。
所以要求x ,将x单独放在左面:x = n (y + z) - y
,
再从n(y+z)中提出一个 (y+z)来,得到x=(n-1)(y+z)+(y+z)-y
,整理公式之后为如下公式:x = (n - 1) (y + z) + z
注意这里n一定是大于等于1的,因为 fast指针至少要多走一圈才能相遇slow指针。
这个公式说明什么呢?
先拿n为1的情况来举例,意味着fast指针在环形里转了一圈之后,就遇到了 slow指针了。
当 n为1的时候,公式就化解为 x = z
,
这就意味着,从头结点出发一个指针,从相遇节点 也出发一个指针,这两个指针每次只走一个节点, 那么当这两个指针相遇的时候就是 环形入口的节点。
也就是在相遇节点处,定义一个指针index1,在头结点处定一个指针index2。
让index1和index2同时移动,每次移动一个节点, 那么他们相遇的地方就是 环形入口的节点。
动画如下:
那么 n如果大于1是什么情况呢,就是fast指针在环形转n圈之后才遇到 slow指针。
其实这种情况和n为1的时候 效果是一样的,一样可以通过这个方法找到 环形的入口节点,只不过,index1 指针在环里 多转了(n-1)圈,然后再遇到index2,相遇点依然是环形的入口节点。
转载自代码随想录,真的讲的挺详细的,如果还有不懂的点击链接看讲解即可。
c++代码
代码使用了快慢指针的方法来检测链表是否含有环,并找到环的起始节点。首先,快指针(fast)和慢指针(slow)都指向头节点,然后快指针每次走两步,慢指针每次走一步。如果链表中存在环,快指针最终会追上慢指针(两者相遇)。当快慢指针相遇时,将一个新的指针index1放在相遇点,另一个新的指针index2放在链表的头节点。然后同时移动这两个指针,每次都向前走一步,当它们再次相遇时,相遇点即为环的起始节点。如果快指针到达链表尾部(即fast指针变为nullptr),说明链表中没有环,返回nullptr。
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
// 初始化两个指针,fast和slow都指向头节点
ListNode* fast = head;
ListNode* slow = head;
// 循环运行,直到fast指针指向链表尾部或者fast指针无法再前进(即链表无环)
while(fast != nullptr && fast->next != nullptr) {
// fast指针每次移动两步
fast = fast->next->next;
// slow指针每次移动一步
slow = slow->next;
// 如果两个指针相遇,说明链表有环
if(fast == slow) {
// 用两个新指针,index1从相遇点开始,index2从头节点开始
ListNode* index1 = fast;
ListNode* index2 = head;
// 当这两个指针相遇时,相遇点就是环的起始位置
while(index1 != index2) {
index1 = index1->next;
index2 = index2->next;
}
// 返回环的起始节点
return index1;
}
}
// 如果没有环,返回nullptr
return nullptr;
}
};