大模型学习与实践笔记(十四)

news2024/11/18 21:30:18

使用 OpenCompass 评测 InternLM2-Chat-7B 模型使用 LMDeploy 0.2.0 部署后在 C-Eval 数据集上的性能

步骤1:下载internLM2-Chat-7B 模型,并进行挂载

以下命令将internlm2-7b模型挂载到当前目录下:

ln -s /share/model_repos/internlm2-7b/ ./

步骤2:编译安装LMdeploy0.2.0

pip install 'lmdeploy[all]==v0.2.0'

步骤3:使用LMdeploy 将模型internLM2-Chat-7B  进行转换

lmdeploy convert internlm2-chat-7b /root/model/Shanghai_AI_Laboratory/internlm2-chat-7b

运行日志:

(internlm-demo) root@intern-studio:~/deploy# lmdeploy convert internlm2-chat-7b /root/model/Shanghai_AI_Laboratory/internlm2-chat-7b
create workspace in directory workspace
copy triton model templates from "/root/.conda/envs/internlm-demo/lib/python3.10/site-packages/lmdeploy/serve/turbomind/triton_models" to "workspace/triton_models"
copy service_docker_up.sh from "/root/.conda/envs/internlm-demo/lib/python3.10/site-packages/lmdeploy/serve/turbomind/service_docker_up.sh" to "workspace"
model_name             internlm2-chat-7b
model_format           None
inferred_model_format  internlm2
model_path             /root/model/Shanghai_AI_Laboratory/internlm2-chat-7b
tokenizer_path         /root/model/Shanghai_AI_Laboratory/internlm2-chat-7b/tokenizer.model
output_format          fp16
01/29 17:36:32 - lmdeploy - WARNING - Can not find tokenizer.json. It may take long time to initialize the tokenizer.
*** splitting layers.0.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.0.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.0.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.0.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.0.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.1.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.1.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.1.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.1.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.1.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.2.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.2.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.2.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.2.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.2.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.3.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.3.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.3.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.3.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.3.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.4.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.4.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.4.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.4.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.4.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.5.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.5.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.5.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.5.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.5.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.6.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.6.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.6.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.6.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.6.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.7.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.7.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.7.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.7.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.7.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.8.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.8.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.8.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.8.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.8.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.9.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                           
*** splitting layers.9.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                               
*** splitting layers.9.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.9.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.9.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                           
*** splitting layers.10.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.10.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.10.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.10.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.10.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.11.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.11.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.11.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.11.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.11.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.12.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.12.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.12.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.12.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.12.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.13.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.13.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.13.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.13.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.13.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.14.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.14.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.14.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.14.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.14.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.15.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.15.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.15.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.15.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.15.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.16.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.16.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.16.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.16.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.16.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.17.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.17.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.17.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.17.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.17.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.18.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.18.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.18.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.18.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.18.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.19.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.19.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.19.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.19.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.19.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.20.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.20.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.20.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.20.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.20.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.21.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.21.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.21.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.21.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.21.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.22.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.22.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.22.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.22.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.22.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.23.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.23.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.23.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.23.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.23.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.24.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.24.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.24.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.24.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.24.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.25.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.25.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.25.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.25.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.25.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.26.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.26.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.26.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.26.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.26.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.27.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.27.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.27.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.27.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.27.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.28.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.28.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.28.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.28.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.28.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.29.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.29.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.29.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.29.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.29.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.30.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.30.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.30.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.30.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.30.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
*** splitting layers.31.attention.w_qkv.weight, shape=torch.Size([4096, 6144]), split_dim=-1, tp=1                                                                                                                                          
*** splitting layers.31.attention.wo.weight, shape=torch.Size([4096, 4096]), split_dim=0, tp=1                                                                                                                                              
*** splitting layers.31.feed_forward.w1.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.31.feed_forward.w3.weight, shape=torch.Size([4096, 14336]), split_dim=-1, tp=1                                                                                                                                         
*** splitting layers.31.feed_forward.w2.weight, shape=torch.Size([14336, 4096]), split_dim=0, tp=1                                                                                                                                          
Convert to turbomind format: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 32/32 [00:27<00:00,  1.18it/s

步骤4:模型结果测评

首先新建config文件,其中参数”/root/deploy/workspace/“表示LMdeploy转换后的模型地址。

from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel

with read_base():
 # choose a list of datasets   
 from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets 
 # and output the results in a choosen format
 from .summarizers.medium import summarizer

datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])

internlm_meta_template = dict(round=[
 dict(role='HUMAN', begin='<|User|>:', end='\n'),
 dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
 eos_token_id=103028)

# config for internlm-chat-7b
internlm2_chat_7b = dict(
 type=TurboMindModel,
 abbr='internlm2-chat-7b-turbomind',
 path='/root/deploy/workspace/',
 engine_config=dict(session_len=512,
 max_batch_size=2,
 rope_scaling_factor=1.0),
 gen_config=dict(top_k=1,
 top_p=0.8,
 temperature=1.0,
 max_new_tokens=100),
 max_out_len=100,
 max_seq_len=512,
 batch_size=2,
 concurrency=1,
 meta_template=internlm_meta_template,
 run_cfg=dict(num_gpus=1, num_procs=1),
)
models = [internlm2_chat_7b]

在opencompass 目录下运行:

python run.py configs/eval_turbomind.py

同样可以添加--debug ,输出日志信息。

python run.py configs/eval_turbomind.py --debug

过程日志如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1419237.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

非阿里云注册域名如何在云解析DNS设置解析?

概述 非阿里云注册域名使用云解析DNS&#xff0c;按照如下步骤&#xff1a; 添加域名。 添加解析记录。 修改DNS服务器。 DNS服务器变更全球同步&#xff0c;等待48小时。 添加解析记录 登录云解析DNS产品控制台。 在 域名解析 页面中&#xff0c;单击 添加域名 。 在 …

虚拟创业团队如何建设

虚拟创业团队如何建设 一、目标设定 在组建虚拟创业团队之前&#xff0c;明确团队目标是至关重要的。目标应具体、可衡量、可实现&#xff0c;并与团队成员共享。通过设定共同的目标&#xff0c;团队成员能够更好地理解团队愿景&#xff0c;明确个人职责&#xff0c;并朝着同…

CRG设计之复位

1. 前言 CRG(Clock and Reset Generation&#xff0c;时钟复位生成模块) 模块扮演着关键角色。这个模块负责为整个系统提供稳定可靠的时钟信号&#xff0c;同时在系统上电或出现故障时生成复位信号&#xff0c;确保各个模块按预期运行。简而言之&#xff0c;CRG模块就像是SoC系…

第九节HarmonyOS 常用基础组件16-Blank

1、描述 空白填充组件&#xff0c;在容器主轴方向上&#xff0c;空白填充组件具有自动填充容器空余部分的能力。仅当父组件为Row/Column/Flex时生效。 2、接口 Blank(min?: number | string) 3、参数 参数名 参数类型 必填 描述 min number|string 否 空白填充组件…

SeaTunnel集群安装

环境准备 服务器节点 节点名称 IP bigdata1 192.168.1.250 bigdata4 192.168.1.251 bigdata5 192.168.1.252 Java环境&#xff08;三个节点都需要&#xff09; java1.8 注意&#xff1a;在安装SeaTunnel集群时&#xff0c;最好是现在一个节点上将所有配置都修改完&a…

【Prometheus】Prometheus的二进制部署+Grafana

目录 一、Prometheus概述 1、概念 2、核心组件prometheus server&#xff1a; 3、Prometheus的特点&#xff1a; 4、prometheus的存储引擎&#xff1a;TSDB 5、Prometheus组件&#xff1a; 6、Prometheus的工作流程&#xff1a; 7、Prometheus的局限性&#xff0c;以及和…

MG7050HAN 基于声表的差分多输出 晶体振荡器 (HCSL)

基于MG7050 HAN的声表差分多输出晶体振荡器(HCSL)&#xff0c;采用两路或四路差分HCSL&#xff08;高速电流驱动逻辑&#xff09;输出&#xff0c;可以减少外部扇出缓冲区&#xff0c;特别适用于需要超低抖动、高频率范围内稳定工作的应用场合。其输出特性曲线超低抖动&#xf…

OpenGL ES 渲染 NV21、NV12 格式图像有哪些“姿势”?

使用2个纹理实现 NV21 格式图像渲染 前文提到渲染 NV21 格式图像需要使用 2 个纹理,分别用于保存 Y plane 和 UV plane 的数据,然后在片段着色器中分别对 2 个纹理进行采样,转换成 RGB 数据。 OpenGLES 渲染 NV21或 NV12 格式图像需要用到 GL_LUMINANCE 和 GL_LUMINANCE_A…

数学公式OCR识别php 对接mathpix api 使用公式编译器

数学公式OCR识别php 对接mathpix api 一、注册账号官网网址&#xff1a;https://mathpix.com 二、该产品支持多端使用注意说明&#xff08;每月10次&#xff09; 三、api 对接第一步创建create keyphp对接api这里先封装两个请求函数&#xff0c;get 和post &#xff0c;通过官方…

matlab appdesigner系列-仪器仪表4-旋钮(离散)

旋钮&#xff08;离散&#xff09;&#xff0c;或叫分档旋钮&#xff0c;跟旋钮的连续性相区别&#xff0c;呈分档性。 示例&#xff1a;模拟空调档位切换 操作步骤&#xff1a; 1&#xff09;将旋钮&#xff08;离散&#xff09;、信号灯、标签拖拽到画布上&#xff0c;并设…

自然语言处理(NLP)技术使用

自然语言处理&#xff08;NLP&#xff09;技术使用 以下是一些自然语言处理&#xff08;NLP&#xff09;技术的例子&#xff1a;以上只是一些NLP技术的例子&#xff0c;还有许多其他的技术和应用&#xff0c;如文本分类、文本生成、问答系统等。NLP技术的发展正逐渐改变人们与计…

MySQL解决 恢复从备份点到灾难点之间数据恢复

CSDN 成就一亿技术人&#xff01; 今天分享一期 mysql中 备份之后发生灾难造成数据丢失 那么如何恢复中间的数据呢&#xff1f; 数据库数据高于一切&#xff08;任何数据是不能丢失的&#xff09; CSDN 成就一亿技术人&#xff01; 目录 1.准备测试数据库 2.备份数据库 观…

JMeter GUI:测试计划和工作台

什么是测试计划&#xff1f; 测试计划是您添加 JMeter 测试所需元素的地方。 它存储运行所需测试所需的所有元素&#xff08;如线程组、计时器等&#xff09;及其相应的设置。 下图显示了测试计划的示例 测试计划是您添加 JMeter 测试所需元素的地方。 它存储运行所需测试…

UI界面设计新手指南 | 零基础快速入门教程

随着互联网的快速发展&#xff0c;许多互联网相关的职位应运而生&#xff0c;其中UI界面设计师是互联网的核心职位之一。UI界面设计已经渗透到我们生活的方方面面&#xff0c;包括网站、应用程序或其他数字平台上的按钮和菜单布局、配色方案和排版。许多人认为 UI界面设计只是关…

算法-枚举专栏

&#xff08;Acwing 140场周赛 5462&#xff09; 1. 给定一个长度为 的正整数数列 你可以对其中任意个&#xff08;可以是 个&#xff09;元素进行修改。 但是&#xff0c;每个元素最多只能修改一次&#xff0c;每次修改&#xff1a;要么令其加 &#xff0c;要么令其减 。…

数据结构之最短路径

数据结构之最短路径 1、单源点最短路径2、每对顶点间的最短路径 数据结构是程序设计的重要基础&#xff0c;它所讨论的内容和技术对从事软件项目的开发有重要作用。学习数据结构要达到的目标是学会从问题出发&#xff0c;分析和研究计算机加工的数据的特性&#xff0c;以便为应…

【Python笔记-设计模式】建造者模式

一、说明 又称生成器&#xff0c;是一种创建型设计模式&#xff0c;使其能够分步骤创建复杂对象。允许使用相同的创建代码生成不同类型和形式的对象。 (一) 解决问题 对象的创建问题&#xff1a;当一个对象的构建过程复杂&#xff0c;且部分构建过程相互独立时&#xff0c;可…

idea 创建 spring boot

1.创建步骤 2. 编码添加 2.1 这是自动生成的启动函数 package com.example.comxjctest4;import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication;SpringBootApplication public class Application {publi…

STM32控制DHT11温湿度传感器模块获取温湿度数据

时间记录&#xff1a;2024/1/29 一、DHT11引脚介绍 &#xff08;1&#xff09;VCC&#xff1a;电源引脚&#xff0c;3.3-5.5V &#xff08;2&#xff09;DATA&#xff1a;数据输入输出引脚 &#xff08;3&#xff09;NC&#xff1a;保留引脚&#xff0c;悬空即可 &#xff08;…

postgresql慢查询排查和复现

postgresql慢查询排查和复现 一. 介绍一张表&#xff1a;pg_stat_activity pg_stat_activity 是 PostgreSQL 中一个非常有用的系统视图&#xff0c;提供了有关当前数据库连接和活动查询的信息。通过查询这个视图&#xff0c;你可以获取有关正在执行的查询、连接的用户、进程 …