postgresql慢查询排查和复现

news2024/11/18 23:35:49

postgresql慢查询排查和复现

一. 介绍一张表:pg_stat_activity

pg_stat_activity 是 PostgreSQL 中一个非常有用的系统视图,提供了有关当前数据库连接和活动查询的信息。通过查询这个视图,你可以获取有关正在执行的查询、连接的用户、进程 ID 等信息。以下是 pg_stat_activity 视图中的一些关键列:

  1. datid: 数据库标识符,表示正在连接的数据库的唯一标识符。
  2. datname: 数据库名称。
  3. pid: 进程 ID,表示数据库连接的唯一标识符。
  4. usesysid: 连接用户的系统标识符。
  5. usename: 连接用户名。
  6. application_name: 连接的应用程序名称(如果应用程序设置了名称)。
  7. client_addr: 客户端的 IP 地址。
  8. client_hostname: 客户端的主机名。
  9. client_port: 客户端连接使用的端口。
  10. backend_start: 连接开始时的时间戳。
  11. xact_start: 事务开始时的时间戳。
  12. query_start: 查询开始执行的时间戳。
  13. state: 连接状态(例如,idle、active、idle in transaction 等)。
    • active: 表示当前连接正在执行查询或事务。
    • idle: 表示当前连接处于空闲状态,没有正在执行的查询或事务。
    • idle in transaction: 表示当前连接处于事务中,但没有正在执行的查询。可能是事务开始后一段时间没有活动。
    • idle in transaction (aborted): 表示当前连接处于事务中,但由于某种原因事务已被中止。
    • fastpath function call: 表示当前连接正在执行一个快速路径函数调用。
    • disabled: 表示当前连接的活动状态已被禁用。
  14. query: 当前正在执行的查询文本。
  15. waiting: 是否在等待锁。

pg_stat_activity 视图,可以监视当前数据库连接的活动状态,了解哪些查询正在执行及运行时间等信息。

二. 复现慢查询

在查询中引入延迟,pg_sleep() 是 PostgreSQL 中的一个函数,用于在查询中引入延迟。这个函数会使查询进程休眠指定的秒数。如果不提供参数,默认为 0 秒。切记不要再生产环境使用.

SELECT pg_sleep(100); -- 这将使查询休眠100秒钟
三. 排查慢查询语句

总的来说,这个查询可以识别数据库中运行时间较长的查询(下面是排查超过30秒的sql,可根据实际需要修改)。

SELECT pid, datname, usename, query, extract(epoch from (now() - query_start)) as total_time, count(1) AS slowsql_count FROM pg_stat_activity where state not in('idle') and query !='' and extract(epoch from (now() - query_start)) > 30  GROUP BY pid, datname, usename, query, total_time;
  1. SELECT pid, datname, usename, query, extract(epoch from (now() - query_start)) as total_time, count(1) AS slowsql_count
    • pid: 进程ID,表示数据库连接的唯一标识符。
    • datname: 数据库名称。
    • usename: 执行查询的用户名称。
    • query: 正在执行的查询文本。
    • extract(epoch from (now() - query_start)) as total_time: 通过计算当前时间与查询开始时间的差值,获取查询已运行的总时间(以秒为单位)。
    • count(1) AS slowsql_count: 用于计算相同查询的数量,即慢查询的数量。
  2. FROM pg_stat_activity
    • 从 PostgreSQL 的 pg_stat_activity 视图中选择活跃的数据库连接信息。这个视图包含了关于当前数据库会话和查询的统计信息。
  3. WHERE state NOT IN ('idle') AND query != '' AND extract(epoch from (now() - query_start)) > 10
    • state NOT IN ('idle'): 确保排除处于空闲状态的数据库连接,只选择活跃的连接。
    • query != '': 排除空查询,确保只选择正在执行的查询。
    • extract(epoch from (now() - query_start)) > 30: 选择运行时间超过30秒的查询。
  4. GROUP BY pid, datname, usename, query, total_time
    • 对选择的结果进行分组,以便聚合相同查询的统计信息。

查询结果:成功定位到慢查询语句:SELECT pg_sleep(100);

在这里插入图片描述

四. 慢查询优化方案
  1. 查询优化:
    • 通过使用 EXPLAIN 分析查询计划,了解 PostgreSQL 是如何执行查询的。优化查询计划可以提高查询性能。
    • 调整查询,避免不必要的全表扫描,确保正确使用索引。
  2. 索引优化:
    • 确保表上的索引是合理的,并涵盖了查询中用于筛选和排序的列。
    • 避免过多的索引,因为它们可能会导致性能下降。
  3. 统计信息更新:
    • 确保 PostgreSQL 统计信息是最新的。自动化统计信息更新可以通过 PostgreSQL 的自动统计信息收集器来完成。
  4. 分区表:
    • 对大型表进行分区,可以提高查询性能,尤其是对那些经常使用范围查询的表。
  5. 调整内存配置:
    • 调整 shared_bufferseffective_cache_size 参数,以确保数据库能够充分利用系统内存。
  6. 定期维护:
    • 定期执行 VACUUMANALYZE 操作,以确保表的空间得到优化,同时更新统计信息。
  7. 使用连接池:
    • 考虑使用连接池,例如 PgBouncer,以减轻数据库服务器的负载。
  8. 日志和监控:
    • 启用 PostgreSQL 的查询日志,并使用工具如 pgBadger 分析日志,以便及时发现慢查询。
    • 使用监控工具,如 pg_stat_statements 扩展,监视查询性能。
  9. 升级 PostgreSQL 版本:
    • 考虑升级到最新的 PostgreSQL 版本,因为新版本通常包含性能改进和优化。
  10. 使用扩展:
    • 考虑使用一些性能优化的扩展,例如 pg_repack 用于表重组,pg_partman 用于表分区等。

常包含性能改进和优化。
10. 使用扩展:
- 考虑使用一些性能优化的扩展,例如 pg_repack 用于表重组,pg_partman 用于表分区等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1419207.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VitePress-04-文档中的表情符号的使用

说明 vitepress 的文档中是支持使用表情符号的,像 😂 等常用的表情都是支持的。 本文就来介绍它的使用方式。 使用语法 语法 : :表情名称: 例如 : :joy: 😂 使用案例代码 # 体会【表情】的基本使用 > hello world …

设计模式——2_0 职责链(Chain of Responsibility)

楼下一个男人并得要死,那家隔壁的一家唱着留声机,对面是弄孩子。楼上有两人狂笑;还有打牌声,河中的船上有女人哭她死去的母亲。人类的悲欢并不相通,我只觉得他们吵闹 ——鲁迅 定义 使多个对象都有机会处理请求&#…

VScode注释快捷键,RStudio注释快捷键, Texmaker注释快捷键

VScode:一款界面简单的代码编辑器;RStudio: R语言的IDE,包含代码编辑器,运行,绘图窗口等;Texmaker:Latex编译器(编辑编译),界面简单,个人认为比Te…

sqli-labs第一关

1.判断是否存在注入,注入是字符型还是数字型? ?id1 and 11 ?id1 and 12 因为输入and 11与and 12 回显正常,所以该地方不是数字型。 ?id1 ?id1-- 输入单引号后报错,在单引号后添加--恢复正常,说明存在字符注入 2.猜解SQL查…

安全 输入输出类 XSS CSRF

输入输出类(留言板) 执行JS语句(XSS漏洞) XSS漏洞(有输入框就可能-见框就X) 反射型 语句植入并执行 存储型 语句植入到数据库,调用数据库就执行 UA头判断访问者浏览器信息 可以XSS php…

亚组分析、P交互、P趋势是什么?如何计算呢?

亚组分析、P交互、P趋势是什么?如何计算呢? (1)亚组分析如何计算? (2)P交互作用的计算方法? (3)P趋势如何计算? (1)亚组…

SNP干货分享:SAP数据脱敏的具体实施步骤

随着信息技术的飞速发展,大数据时代的到来使得数据成为国家经济、企业竞争力和个人隐私的重要载体。在这种背景下,数据安全问题日益凸显,各国政府纷纷出台相关法规以保护数据安全。我国也不断完善数据安全法规体系,以确保国家利益…

十分钟发布自己的NFT

概述 本文将以一个例子来说明如何在opensea快速发布自己的NFT智能合约(ERC721)。本着DRY(Dont Repeat Yourself)原则,我们需要站在巨人的肩膀上来搭建自己的应用,使用经过社区审计和实践检验的代码可以有效…

python统计分析——样本方差的分布

参考资料:用python动手学统计学 1、导入库 import numpy as np import pandas as pd import scipy as sp from scipy import statsfrom matplotlib import pyplot as plt import seaborn as sns 2、数据准备 建立一个平均数为4,标准差为0.8的正态分布…

腾讯云4核16G服务器价格,用于幻兽帕鲁Palworld专用

腾讯云幻兽帕鲁服务器4核16G、8核32G和16核64G配置可选,4核16G14M带宽66元一个月、277元3个月,8核32G22M配置115元1个月、345元3个月,16核64G35M配置580元年1个月、1740元3个月、6960元一年,腾讯云百科txybk.com分享腾讯云幻兽帕鲁…

自然语言处理 TF-IDF

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心&…

Java强训day10(选择题编程题)

选择题 public class Test01 {public static void main(String[] args) {try{int i 100 / 0;System.out.print(i);}catch(Exception e){System.out.print(1);throw new RuntimeException();}finally{System.out.print(2);}System.out.print(3);} }编程题 题目1 import jav…

重构改善既有代码的设计-学习(六):处理继承关系

1、函数上移(Pull Up Method) 无论何时,只要系统内出现重复,你就会面临“修改其中一个却未能修改另一个”的风险。通常,找出重复也有一定的难度。 所以,某个函数在各个子类中的函数体都相同(它们…

leetcode hot100跳跃游戏Ⅱ

本题和上一题还是有不一样的地方,这个题中,我们需要记录我们跳跃的步数并尽可能的满足最小的跳跃步数到达终点。 那么我们还是采用覆盖范围的概念,但是我们需要两个,一个是在当前位置的覆盖范围,另一个是下一步的覆盖…

Linux的 .bashrc 有什么作用?

一、.bashrc 是什么? 有什么用? .bashrc是一个存储在你的home目录下的隐藏文件,它用来配置和自定义你的终端环境和行为。 每次你启动一个新的终端时,.bashrc文件就会被执行,加载你设置的环境变量,别名,函数…

深度学习-自注意力机制

文字编码 one-hot编码,让模型自己去学习怎么进行编码 常见的输出 1.每个词都有一个输出值 2.每个句子输出一个值,情感分类 3.输入与输出长度不对应,翻译任务,生成任务。 RNN最早的语言处理 RNN解决的是模型去考虑前面的输入…

数字图像处理(实践篇)二十八 使用OpenCV Python中的K-means对图像进行颜色量化处理

目录 1 颜色量化 2 实践 在某些时候,不可避免的某些设备只能生成有限数量的颜色。因此需要执行颜色量化。选择使用cv2.kmeans()函数对颜色量化应用k-means聚类。 1 颜色量化 使用K-means聚类在图像中实现颜色量化的步骤如下: ① 导入依赖库

js实现动漫拼图2.0版

比较与1.0版,2.0版就更像与华容道类似的拼图游戏,从头到尾都只能控制白色块移动,而且打乱拼图和求助的实现与1.0都不相同 文章目录 1 实现效果2 实现思路2.1 打乱拼图2.2 求助功能2.3 判赢 3 代码实现 js实现动漫拼图1.0版 https://blog.csdn…

【千亿生意】一张眼底图,浮现你未来十年身体1000多种疾病风险

【千亿生意】一张眼底图,浮现你未来十年身体1000多种疾病风险 一眼看全身鹰瞳思路眼底看全身论文眼底成像技术眼底看肝脏眼底看多囊卵巢综合征眼底看肺部眼底看贫血眼底看少肌症眼底看神经退行眼底看心血管眼底看肾脏 鹰瞳视网膜论文 一眼看全身 眼病,是…

Redisson分布式锁介绍及实战应用(防止缓存击穿)

本地锁 浏览器把100w请求由网关随机往下传,在集群情况下,每台服务都放行10w请求过来,这时候每台服务都用的是本地锁是跨JVM的, 列如这些服务都没有49企业,此时有几个服务进行回原了打击在DB上面,那后期把这…