C++ —— 智能指针

news2024/12/26 17:46:07

C++ —— 智能指针


文章目录

  • C++ —— 智能指针
  • 一、为什么需要使用智能指针?
  • 二、内存泄漏
    • 什么是内存泄漏?
    • 内存泄漏的危害?
    • 内存泄漏分类
  • 三、智能指针的使用及原理
    • 1. RAII
    • 2. 智能指针的原理
  • 三、智能指针的缺陷及其发展
    • 3.1 std::auto_ptr
    • 3.2 std::unique_ptr
    • 3.3 std::shared_ptr
    • 3.4 std::weak_ptr
  • 四、C++11和boost中智能指针的关系
  • 五、总结


一、为什么需要使用智能指针?

我们观察如下代码,并思考代码中提到的三个问题

int div()
{
	int a, b;
	cin >> a >> b;
	if (b == 0)
		throw invalid_argument("除0错误");
	return a / b;
}
void Func()
{
	// 1、如果p1这里new 抛异常会如何?
	// 2、如果p2这里new 抛异常会如何?
	// 3、如果div调用这里又会抛异常会如何?
	int* p1 = new int;
	int* p2 = new int;
	cout << div() << endl;
	delete p1;
	delete p2;
}
int main()
{
	try
	{
		Func();
	}
	catch (exception& e)
	{
		cout << e.what() << endl;
	}
	return 0;
}

通过分析代码我们可以发现,在一些情况下,由于抛异常与捕获异常的跳转情况,在抛异常前申请的内存空间存在没有回收的可能
例如上述代码中p1与p2指针都是我们先new出来的对象,在调用div函数时候,一但我们输入的除数为0,此时程序就会抛异常,程序就会直接跳转到catch语句,进行捕获异常的操作,而本应该进行的delete p1与delete p2语句则被跳过了,此时就出现了内存泄漏的情况,而智能指针的提出就是用来解决这个问题的

二、内存泄漏

什么是内存泄漏?

什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对该段内存的控制,因而造成了内存的浪费

内存泄漏的危害?

内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现内存泄漏会导致响应越来越慢,最终卡死

内存泄漏分类

C/C++程序中一般我们关心两种方面的内存泄漏:

  1. 堆内存泄漏(Heap leak)
    堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak

  2. 系统资源泄漏
    指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定

三、智能指针的使用及原理

1. RAII

RAII(Resource Acquisition Is Initialization)是一种利用对象生命周期来控制程序资源(如内存、文件句柄、网络连接、互斥量等等)的简单技术。在对象构造时获取资源,接着控制对资源的访问使之在对象的生命周期内始终保持有效,最后在对象析构的时候释放资源。借此,我们实际上把管理一份资源的责任托管给了一个对象

这种做法有两大好处:

  1. 不需要显式地释放资源
  2. 采用这种方式对象所需的资源在其生命期内始终保持有效

2. 智能指针的原理

智能指针实际上是RAII思想的一种具体实现,简单来讲就是将我们自主开辟的内存空间交给一个类的对象来管理,利用类的特性,在对象构造时获取资源来管理,在对象析构的时候会自动调用析构函数,此时释放我们开辟的资源

template<class T>
class SmartPtr
{
public:
	// RAII
	SmartPtr(T* ptr)
		:_ptr(ptr)
	{}

	~SmartPtr()
	{
		delete[] _ptr;
		cout << "delete[] " << _ptr << endl;
	}
private:
	T* _ptr;
};

有了智能指针我们再运行上述内存泄漏的代码看看

double Division(int a, int b)
{
	// 当b == 0时抛出异常
	if (b == 0)
	{
		throw invalid_argument("Division by zero condition!");
	}

	return (double)a / (double)b;
}

void Func()
{
	// RAII
	SmartPtr<int> sp1(new int[10]);
	SmartPtr<double> sp2(new double[10]);

	int len, time;
	cin >> len >> time;
	cout << Division(len, time) << endl;
}

int main()
{
	try
	{
		Func();
	}
	catch (const exception& e)
	{
		cout << e.what() << endl;
	}

	return 0;
}

在这里插入图片描述
可以发现此时内存泄漏的问题解决了
但作为一个指针,还需要有 *、-> 等功能,才能真正称得上是一个指针

我们将其完善一下

template<class T>
class SmartPtr
{
public:
	// RAII
	SmartPtr(T* ptr)
		:_ptr(ptr)
	{}

	~SmartPtr()
	{
		delete[] _ptr;
		cout << "delete[] " << _ptr << endl;
	}

	T& operator* ()
	{
		return *_ptr;
	}
	
	T* operator-> ()
	{
		return _ptr;
	}

private:
	T* _ptr;
};

总结一下智能指针的原理:

  1. RAII特性
  2. 重载operator*和opertaor->,具有像指针一样的行为

三、智能指针的缺陷及其发展

基本的智能指针框架我们都完成了,不仅能自动释放空间,还具备有指针的基本属性
但上文中我们实现的SmartPtr还是具有一定的缺陷,我们将智能指针拷贝赋值时,就存在了两个智能指针对象共同管理一片空间,这也意味着同一块申请的空间可能会被析构两次,此时BUG就出现了

而下面将逐步分析C++如何优化解决这一问题的

3.1 std::auto_ptr

C++98版本的库中就提供了auto_ptr的智能指针

auto_ptr的实现原理:管理权转移的思想,下面简化模拟实现了一份Tlzns::auto_ptr来了解它的原理

namespace Tlzns
{
	template<class T>
	class auto_ptr
	{
	public:
		// RAII
		auto_ptr(T* ptr)
			:_ptr(ptr)
		{}

		auto_ptr(auto_ptr<T>& ap)
			:_ptr(ap._ptr)
		{
			ap._ptr = nullptr;
		}


		~auto_ptr()
		{
			delete[] _ptr;
			cout << "delete[] " << _ptr << endl;
		}

		T& operator* ()
		{
			return *_ptr;
		}

		T* operator-> ()
		{
			return _ptr;
		}

		//1.自己给自己赋值
		//2.自己原来有值改为其他的
		auto_ptr<T> operator= (auto_ptr<T>& ap)
		{
			if (this != &ap)
			{
				//释放原有管理空间
				delete _ptr;

				_ptr = ap->_ptr;
				ap->_ptr = nullptr;
			}

			return *this;
		}

	private:
		T* _ptr;
	};

}

3.2 std::unique_ptr

C++11中开始提供更靠谱的unique_ptr
unique_ptr的实现原理:简单粗暴的防拷贝,下面简化模拟实现了一份UniquePtr来了解它的原理

简单粗暴,直接杜绝拷贝

namespace Tlzns
{
	template<class T>
	class unique_ptr
	{
	public:
		// RAII
		unique_ptr(T* ptr)
			:_ptr(ptr)
		{}

		~unique_ptr()
		{
			delete[] _ptr;
			cout << "delete[] " << _ptr << endl;
		}

		T& operator* ()
		{
			return *_ptr;
		}

		T* operator-> ()
		{
			return _ptr;
		}


		//C++11
		unique_ptr(unique_ptr<T>& up) = delete;
		unique_ptr<T> operator= (unique_ptr<T>& up) = delete;

	//private:
	//	//C++98
	//	//1、只声明不实现
	//	// 2、限定为私有
	//	unique_ptr(const unique_ptr<T>& up);
	//	unique_ptr<T>& operator=(const unique_ptr<T>& up);

	private:
		T* _ptr;
	};

}

3.3 std::shared_ptr

C++11中开始提供更靠谱的并且支持拷贝的shared_ptr

shared_ptr的原理:是通过引用计数的方式来实现多个shared_ptr对象之间共享资源
例如:老板晚上在下班之前都会通知,让最后走的员工记得把门锁下

  1. shared_ptr在其内部,给每个资源都维护了着一份计数,用来记录该份资源被几个对象共享
  2. 在对象被销毁时(也就是析构函数调用),就说明自己不使用该资源了,对象的引用计数减一
  3. 如果引用计数是0,就说明自己是最后一个使用该资源的对象,必须释放该资源
  4. 如果不是0,就说明除了自己还有其他对象在使用该份资源,不能释放该资源,否则其他对象就成野指针了
namespace Tlzns
{
	template<class T>
	class shared_ptr
	{
	public:
		// RAII
		shared_ptr(T* ptr = nullptr)
			:_ptr(ptr)
			,_pcount(new int(1))
		{}

		shared_ptr(shared_ptr<T>& sp)
			:_ptr(sp._ptr)
			,_pcount(sp._pcount)
		{
			(*_pcount)++;
		}

		void release()
		{
			if (--(*_pcount) == 0)
			{
				cout << "delete->" << _ptr << endl;
				delete _ptr;
				delete _pcount;
			}
		}

		~shared_ptr()
		{
			release();
		}

		T& operator* ()
		{
			return *_ptr;
		}

		T* operator-> ()
		{
			return _ptr;
		}

		//自己给自己赋值的两种情况
		//1. sp1 = sp1
		//2. sp1 = sp2
		shared_ptr<T> operator= (shared_ptr<T>& sp)
		{
			if (_ptr != sp._ptr)
			{
				//若原有引用计数为0,释放原有空间
				release();

				_ptr = sp->_ptr;
				_pcount = sp->_pcount;
				(*_pcount)++;
			}

			return *this;
		}

	private:
		T* _ptr;
		int* _pcount;
	};

}

这份自实现的shared_ptr用引用计数解决了重复析构的问题,但上述代码中并不支持delete一个数组或者容器,单单只支持delete一个对象 不支持delete[],为改进这个问题C++11中新增了一个构造函数,可以手动编写del的规则
在这里插入图片描述
我们用function接收析构规则,并提供默认的析构规则来解决问题

namespace Tlzns
{
	template<class T>
	class shared_ptr
	{
	public:
		// RAII
		shared_ptr(T* ptr = nullptr)
			:_ptr(ptr)
			, _pcount(new int(1))
		{}

		template<class D>
		shared_ptr(T* ptr, D del)
			: _ptr(ptr)
			, _pcount(new int(1))
			, _del(del)
		{}


		shared_ptr(shared_ptr<T>& sp)
			:_ptr(sp._ptr)
			, _pcount(sp._pcount)
		{
			(*_pcount)++;
		}

		void release()
		{
			if (--(*_pcount) == 0)
			{
				cout << "delete->" << _ptr << endl;
				//delete _ptr;
				_del(_ptr);
				delete _pcount;
			}
		}

		~shared_ptr()
		{
			release();
		}

		T& operator* ()
		{
			return *_ptr;
		}

		T* operator-> ()
		{
			return _ptr;
		}

		//自己给自己赋值的两种情况
		//1. sp1 = sp1
		//2. sp1 = sp2
		shared_ptr<T> operator= (shared_ptr<T>& sp)
		{
			if (_ptr != sp._ptr)
			{
				//若原有引用计数为0,释放原有空间
				release();

				_ptr = sp->_ptr;
				_pcount = sp->_pcount;
				(*_pcount)++;
			}

			return *this;
		}

	private:
		T* _ptr;
		int* _pcount;
		//用function接收析构规则,并提供默认的析构规则
		function<void(T*)> _del = [](T* ptr) {delete ptr; };
	};
}

我们可以进行测试

struct s
{
	~s()
	{
		cout << "delete" << endl;
	}
};

int main()
{
	Tlzns::shared_ptr<s> ap1(new s[10], [](s* p) {delete[] p; });
	return 0;
}

在这里插入图片描述
至此shared_ptr已经趋近于完美,但仍然具有循环引用的缺陷

struct ListNode
{
	int _data;
	shared_ptr<ListNode> _prev;
	shared_ptr<ListNode> _next;

	~ListNode() { cout << "~ListNode()" << endl; }
};
int main()
{
	shared_ptr<ListNode> node1(new ListNode);
	shared_ptr<ListNode> node2(new ListNode);

	cout << node1.use_count() << endl;
	cout << node2.use_count() << endl;

	node1->_next = node2;
	node2->_prev = node1;

	cout << node1.use_count() << endl;
	cout << node2.use_count() << endl;
	return 0;
}

在这里插入图片描述
我们可以看到,由于循环引用的问题,使得node1与node2都没有调用析构函数

循环引用分析:
1.node1和node2两个智能指针对象指向两个节点,引用计数变成1,我们不需要手动delete
2.node1的_next指向node2,node2的_prev指向node1,引用计数变成2
3.node1和node2析构,引用计数减到1,但是_next还指向下一个节点,但是_prev还指向上一个节点
4.也就是说_next析构了,node2就释放了
5.也就是说_prev析构了,node1就释放了
6.但是_next属于node的成员,node1释放了,_next才会析构,而node1由_prev管理,_prev属于node2成员,所以这就叫循环引用,双方都在等对方释放,所以谁也不会释放

在这里插入图片描述

为了解决这个问题 C++提出了weak_ptr

3.4 std::weak_ptr

注意:weak_ptr其实已经脱离了RAII的思想,weak_ptr的提出只是为了解决shared_ptr循环引用的问题

解决方案:在引用计数的场景下,把节点中的_prev和_next改成weak_ptr
原理:node1->_next = node2;与node2->_prev = node1;时,weak_ptr的_next和_prev不会增加node1和node2的引用计数

namespace Tlzns
{
	template<class T>
	class shared_ptr
	{
	public:
		// RAII
		shared_ptr(T* ptr = nullptr)
			:_ptr(ptr)
			, _pcount(new int(1))
		{}

		template<class D>
		shared_ptr(T* ptr, D del)
			: _ptr(ptr)
			, _pcount(new int(1))
			, _del(del)
		{}


		shared_ptr(const shared_ptr<T>& sp)
			:_ptr(sp._ptr)
			, _pcount(sp._pcount)
		{
			(*_pcount)++;
		}

		void release()
		{
			if (--(*_pcount) == 0)
			{
				cout << "delete->" << _ptr << endl;
				//delete _ptr;
				_del(_ptr);
				delete _pcount;
			}
		}

		~shared_ptr()
		{
			release();
		}

		T& operator* ()
		{
			return *_ptr;
		}

		T* operator-> ()
		{
			return _ptr;
		}

		//自己给自己赋值的两种情况
		//1. sp1 = sp1
		//2. sp1 = sp2
		shared_ptr<T> operator= (const shared_ptr<T>& sp)
		{
			if (_ptr != sp._ptr)
			{
				//若原有引用计数为0,释放原有空间
				release();

				_ptr = sp->_ptr;
				_pcount = sp->_pcount;
				(*_pcount)++;
			}

			return *this;
		}

		int use_count() const
		{
			return *_pcount;
		}

		T* get() const
		{
			return _ptr;
		}

	private:
		T* _ptr;
		int* _pcount;
		//用function接收析构规则,并提供默认的析构规则
		function<void(T*)> _del = [](T* ptr) {delete ptr; };
	};



	template<class T>
	class weak_ptr
	{
	public:
		weak_ptr()
			:_ptr(nullptr)
		{}

		weak_ptr(const shared_ptr<T>& sp)
			:_ptr(sp.get())
		{}

		weak_ptr<T>& operator=(const shared_ptr<T>& sp)
		{
			_ptr = sp.get();
			return *this;
		}

		// 像指针一样
		T& operator*()
		{
			return *_ptr;
		}

		T* operator->()
		{
			return _ptr;
		}
	private:
		T* _ptr;
	};

}
struct ListNode
{
	int _data;
	weak_ptr<ListNode> _prev;
	weak_ptr<ListNode> _next;

	~ListNode() { cout << "~ListNode()" << endl; }
};
int main()
{
	shared_ptr<ListNode> node1(new ListNode);
	shared_ptr<ListNode> node2(new ListNode);

	cout << node1.use_count() << endl;
	cout << node2.use_count() << endl;

	node1->_next = node2;
	node2->_prev = node1;

	cout << node1.use_count() << endl;
	cout << node2.use_count() << endl;
	return 0;
}

在这里插入图片描述

四、C++11和boost中智能指针的关系

  1. C++ 98 中产生了第一个智能指针auto_ptr
  2. C++ boost给出了更实用的scoped_ptr和shared_ptr和weak_ptr.
  3. C++ TR1,引入了shared_ptr等。不过注意的是TR1并不是标准版。
  4. C++ 11,引入了unique_ptr和shared_ptr和weak_ptr。需要注意的是unique_ptr对应boost的scoped_ptr。并且这些智能指针的实现原理是参考boost中的实现的

boost标准库就像是C++的先行版本,用于测试开发新的功能

五、总结

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1418969.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring IoC容器(一)

IoC,Inversion of Control 控制反转&#xff0c;是一个过程。仅通过构造函数、工厂方法或在对象实例化后在对象实例上设置属性来定义其依赖关系。容器负责这些工作&#xff0c;这个过程从本质上来说是bean本身的反向&#xff0c;因此称为反向控制。 1 容器 负责实例化、配置及…

Linux系列之查看cpu、内存、磁盘使用情况

查看磁盘空间 df命令用于显示磁盘分区上的可使用的磁盘空间。默认显示单位为KB。可以利用该命令来获取硬盘被占用了多少空间&#xff0c;目前还剩下多少空间等信息。使用df -h命令&#xff0c;加个-h参数是为了显示GB MB KB单位&#xff0c;这样更容易查看 Filesystem …

2024年软考高项备考攻略

一、了解考试大纲和要求 在开始备考之前&#xff0c;首先要对考试大纲和要求进行全面了解。这有助于明确考试内容和学习方向&#xff0c;制定学习计划。 二、制定学习计划 在制定计划时&#xff0c;可以根据自己的实际情况和学习习惯&#xff0c;选择适合自己的学习方式。以…

LocalContainerEntityManagerFactoryBean源码

是 Spring Data JPA 中的一个类&#xff0c;它用于创建 EntityManagerFactory 的实例&#xff0c;获取EntityManager实例 public class LocalContainerEntityManagerFactoryBean extends AbstractEntityManagerFactoryBeanimplements ResourceLoaderAware, LoadTimeWeaverAwar…

Netty源码二:服务端创建NioEventLoopGroup

示例 还是拿之前启动源码的示例&#xff0c;来分析NioEventLoopGroup源码 NioEventLoopGroup构造函数 这里能看到会调到父类的MultiThread EventLoopGroup的构造方法 MultiThreadEventLoopGroup 这里我们能看到&#xff0c;如果传入的线程数目为0&#xff0c;那么就会设置2倍…

RabbitMQ-如何保证消息不丢失

RabbitMQ常用于 异步发送&#xff0c;mysql&#xff0c;redis&#xff0c;es之间的数据同步 &#xff0c;分布式事务&#xff0c;削峰填谷等..... 在微服务中&#xff0c;rabbitmq是我们经常用到的消息中间件。它能够异步的在各个业务之中进行消息的接受和发送&#xff0c;那么…

代码随想录算法刷题训练营day19

代码随想录算法刷题训练营day19&#xff1a;LeetCode(404)左叶子之和、LeetCode(112)路径总和、LeetCode(113)路径总和 II、LeetCode(105)从前序与中序遍历序列构造二叉树、LeetCode(106)从中序与后序遍历序列构造二叉树 LeetCode(404)左叶子之和 题目 代码 /*** Definitio…

GitHub 上传文件夹到远程仓库、再次上传修改文件、如何使用lfs上传大文件、github报错一些问题

按照大家的做法&#xff0c;把自己遇到的问题及解决方案写出来&#xff08;注意&#xff1a;Error里面有些方法有时候我用可以成功&#xff0c;有时候我用也不能成功&#xff0c;写出来仅供参考&#xff0c;实在不行重头再clone&#xff0c;add&#xff0c;commit&#xff0c;p…

Virtual Assistant for Smartphone;Denoising Autoencoder;CrossMAE

本文首发于公众号&#xff1a;机器感知 Virtual Assistant for Smartphone&#xff1b;Denoising Autoencoder&#xff1b;CrossMAE The Case for Co-Designing Model Architectures with Hardware While GPUs are responsible for training the vast majority of state-of-t…

dvwa,xss反射型lowmedium

xss&#xff0c;反射型&#xff0c;low&&medium low发现xss本地搭建实操 medium作为初学者的我第一次接触比较浅的绕过思路 low 发现xss 本关无过滤 <script>alert(/xss/)</script> //或 <script>confirm(/xss/)</script> //或 <script&…

vulnhub靶场之EMPIRE:BREAKOUT

一.环境搭建 1.靶场描述 Description Back to the Top Difficulty: Easy This box was created to be an Easy box, but it can be Medium if you get lost. For hints discord Server ( https://discord.gg/7asvAhCEhe ) 2.靶场地址 https://www.vulnhub.com/entry/empire-…

Canny边缘检测算法(python 实现)

1. 应用高斯滤波来平滑(模糊)图像&#xff0c;目的是去除噪声 2. 计算梯度强度和方向&#xff0c;寻找边缘&#xff0c;即灰度强度变化最强的位置 3应用非最大抑制技术NMS来消除边误检模糊&#xff08;blurred&#xff09;的边界变得清晰&#xff08;sharp&#xff09;。保留了…

力扣题目训练(3)

2024年1月27日力扣题目训练 2024年1月27日力扣题目训练290. 单词规律292. Nim 游戏303. 区域和检索 - 数组不可变91. 解码方法92. 反转链表 II41. 缺失的第一个正数 2024年1月27日力扣题目训练 2024年1月27日第三天编程训练&#xff0c;今天主要是进行一些题训练&#xff0c;包…

机器学习算法实战案例:使用 Transformer 模型进行时间序列预测实战(升级版)

时间序列预测是一个经久不衰的主题&#xff0c;受自然语言处理领域的成功启发&#xff0c;transformer模型也在时间序列预测有了很大的发展。 本文可以作为学习使用Transformer 模型的时间序列预测的一个起点。 文章目录 机器学习算法实战案例系列答疑&技术交流数据集数据…

Java RC4加密算法

一、RC4加密算法 在密码学中&#xff0c;RC4&#xff08;来自Rivest Cipher 4的缩写&#xff09;是一种流加密算法&#xff0c;密钥长度可变。它加解密使用相同的密钥&#xff0c;因此也属于对称加密算法。 百度百科 - RC4&#xff1a;https://baike.baidu.com/item/RC4/34545…

揭秘1688商品详情API接口:一探阿里巴巴的亿级商品数据宝藏

一、概述 1688商品详情API接口是阿里巴巴提供的一套应用程序接口&#xff0c;允许第三方开发者获取1688平台上的商品详情信息。通过使用这个接口&#xff0c;开发者可以获取到商品的详细属性、规格参数、价格等信息&#xff0c;从而进行深度分析和挖掘&#xff0c;进一步优化和…

selenium元素定位---元素点击交互异常解决方法

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;薪资嘎嘎涨 1、异常原因 在编写ui自动化时&#xff0c;执行报错元素无法点击&#xff1a;ElementClickIn…

基础算法之Huffman编码

// Type your code here, or load an example. #include<iostream> #include<string> #include<queue> #include <unordered_map> #include <vector>using namespace std;//树节点结构 struct Node {char ch;int freq;Node *left;Node *right;No…

【数据结构】(一)从绪论到各种线性表

目录 一、绪论Introduction 1、数据结构 2、逻辑结构&#xff08;数据元素之间的相互关系&#xff09; 3、物理结构&#xff08;数据逻辑结构在计算机中的存储形式&#xff09; 4、数据类型&#xff08;一组性质相同的值的集合及定义在此集合上的一些操作的总称&#xff09…

幻兽帕鲁服务器多少钱?2024年Palworld游戏主机费用

幻兽帕鲁服务器多少钱&#xff1f;价格便宜&#xff0c;阿里云4核16G幻兽帕鲁专属服务器32元1个月、66元3个月&#xff0c;4核32G配置113元1个月、339元3个月&#xff1b;腾讯云4核16G14M服务器66元1个月、277元3个月、1584元一年。阿腾云atengyun.com分享阿里云和腾讯云palwor…