Virtual Assistant for Smartphone;Denoising Autoencoder;CrossMAE

news2024/12/26 17:45:31

本文首发于公众号:机器感知

Virtual Assistant for Smartphone;Denoising Autoencoder;CrossMAE

The Case for Co-Designing Model Architectures with Hardware

图片

While GPUs are responsible for training the vast majority of state-of-the-art deep learning models, the implications of their architecture are often overlooked when designing new deep learning (DL) models. As a consequence, modifying a DL model to be more amenable to the target hardware can significantly improve the runtime performance of DL training and inference. In this paper, we provide a set of guidelines for users to maximize the runtime performance of their transformer models. We find the throughput of models with efficient model shapes is up to 39% higher while preserving accuracy compared to models with a similar number of parameters but with unoptimized shapes.

Taiyi-Diffusion-XL: Advancing Bilingual Text-to-Image Generation with Large Vision-Language Model Support

Recent advancements in text-to-image models have significantly enhanced image generation capabilities, yet a notable gap of open-source models persists in bilingual or Chinese language support. To address this need, we present Taiyi-Diffusion-XL, a new Chinese and English bilingual text-to-image model which is developed by extending the capabilities of CLIP and Stable-Diffusion-XL through a process of bilingual continuous pre-training. Our empirical results indicate that the developed CLIP model excels in bilingual image-text retrieval.Furthermore, the bilingual image generation capabilities of Taiyi-Diffusion-XL surpass previous models. This research leads to the development and open-sourcing of the Taiyi-Diffusion-XL model, representing a notable advancement in the field of image generation, particularly for Chinese language applications.

VJT: A Video Transformer on Joint Tasks of Deblurring, Low-light Enhancement and Denoising

图片

Video restoration task aims to recover high-quality videos from low-quality observations. This contains various important sub-tasks, such as video denoising, deblurring and low-light enhancement, since video often faces different types of degradation, such as blur, low light, and noise. Even worse, these kinds of degradation could happen simultaneously when taking videos in extreme environments. In this paper, to the best of our knowledge, we are the first to propose an efficient end-to-end video transformer approach for the joint task of video deblurring, low-light enhancement, and denoising. We also provide a new Multiscene-Lowlight-Blur-Noise (MLBN) dataset, which is generated according to the characteristics of the joint task based on the RealBlur dataset and YouTube videos to simulate realistic scenes as far as possible.

GPTVoiceTasker: LLM-Powered Virtual Assistant for Smartphone

图片

Virtual assistants have the potential to play an important role in helping users achieves different tasks. However, these systems face challenges in their real-world usability, characterized by inefficiency and struggles in grasping user intentions. Leveraging recent advances in Large Language Models (LLMs), we introduce GptVoiceTasker, a virtual assistant poised to enhance user experiences and task efficiency on mobile devices. GptVoiceTasker excels at intelligently deciphering user commands and executing relevant device interactions to streamline task completion. The system continually learns from historical user commands to automate subsequent usages, further enhancing execution efficiency. Our experiments affirm GptVoiceTasker's exceptional command interpretation abilities and the precision of its task automation module. In our user study, GptVoiceTasker boosted task efficiency in real-world scenarios by 34.85%, accompanied by positive participant feedback. We made GptVoiceTasker open-source, inviting further research into LLMs utilization for diverse tasks through prompt engineering and leveraging user usage data to improve efficiency.

Rethinking Patch Dependence for Masked Autoencoders

图片

In this work, we re-examine inter-patch dependencies in the decoding mechanism of masked autoencoders (MAE). We decompose this decoding mechanism for masked patch reconstruction in MAE into self-attention and cross-attention. Our investigations suggest that self-attention between mask patches is not essential for learning good representations. To this end, we propose a novel pretraining framework: Cross-Attention Masked Autoencoders (CrossMAE). CrossMAE's decoder leverages only cross-attention between masked and visible tokens, with no degradation in downstream performance. CrossMAE matches MAE in performance with 2.5 to 3.7x less decoding compute. It also surpasses MAE on ImageNet classification and COCO instance segmentation under the same compute.

Deconstructing Denoising Diffusion Models for Self-Supervised Learning

图片

In this study, we examine the representation learning abilities of Denoising Diffusion Models (DDM) that were originally purposed for image generation. Our philosophy is to deconstruct a DDM, gradually transforming it into a classical Denoising Autoencoder (DAE). This deconstructive procedure allows us to explore how various components of modern DDMs influence self-supervised representation learning. We observe that only a very few modern components are critical for learning good representations, while many others are nonessential. Our study ultimately arrives at an approach that is highly simplified and to a large extent resembles a classical DAE.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1418955.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

dvwa,xss反射型lowmedium

xss&#xff0c;反射型&#xff0c;low&&medium low发现xss本地搭建实操 medium作为初学者的我第一次接触比较浅的绕过思路 low 发现xss 本关无过滤 <script>alert(/xss/)</script> //或 <script>confirm(/xss/)</script> //或 <script&…

vulnhub靶场之EMPIRE:BREAKOUT

一.环境搭建 1.靶场描述 Description Back to the Top Difficulty: Easy This box was created to be an Easy box, but it can be Medium if you get lost. For hints discord Server ( https://discord.gg/7asvAhCEhe ) 2.靶场地址 https://www.vulnhub.com/entry/empire-…

Canny边缘检测算法(python 实现)

1. 应用高斯滤波来平滑(模糊)图像&#xff0c;目的是去除噪声 2. 计算梯度强度和方向&#xff0c;寻找边缘&#xff0c;即灰度强度变化最强的位置 3应用非最大抑制技术NMS来消除边误检模糊&#xff08;blurred&#xff09;的边界变得清晰&#xff08;sharp&#xff09;。保留了…

力扣题目训练(3)

2024年1月27日力扣题目训练 2024年1月27日力扣题目训练290. 单词规律292. Nim 游戏303. 区域和检索 - 数组不可变91. 解码方法92. 反转链表 II41. 缺失的第一个正数 2024年1月27日力扣题目训练 2024年1月27日第三天编程训练&#xff0c;今天主要是进行一些题训练&#xff0c;包…

机器学习算法实战案例:使用 Transformer 模型进行时间序列预测实战(升级版)

时间序列预测是一个经久不衰的主题&#xff0c;受自然语言处理领域的成功启发&#xff0c;transformer模型也在时间序列预测有了很大的发展。 本文可以作为学习使用Transformer 模型的时间序列预测的一个起点。 文章目录 机器学习算法实战案例系列答疑&技术交流数据集数据…

Java RC4加密算法

一、RC4加密算法 在密码学中&#xff0c;RC4&#xff08;来自Rivest Cipher 4的缩写&#xff09;是一种流加密算法&#xff0c;密钥长度可变。它加解密使用相同的密钥&#xff0c;因此也属于对称加密算法。 百度百科 - RC4&#xff1a;https://baike.baidu.com/item/RC4/34545…

揭秘1688商品详情API接口:一探阿里巴巴的亿级商品数据宝藏

一、概述 1688商品详情API接口是阿里巴巴提供的一套应用程序接口&#xff0c;允许第三方开发者获取1688平台上的商品详情信息。通过使用这个接口&#xff0c;开发者可以获取到商品的详细属性、规格参数、价格等信息&#xff0c;从而进行深度分析和挖掘&#xff0c;进一步优化和…

selenium元素定位---元素点击交互异常解决方法

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;薪资嘎嘎涨 1、异常原因 在编写ui自动化时&#xff0c;执行报错元素无法点击&#xff1a;ElementClickIn…

基础算法之Huffman编码

// Type your code here, or load an example. #include<iostream> #include<string> #include<queue> #include <unordered_map> #include <vector>using namespace std;//树节点结构 struct Node {char ch;int freq;Node *left;Node *right;No…

【数据结构】(一)从绪论到各种线性表

目录 一、绪论Introduction 1、数据结构 2、逻辑结构&#xff08;数据元素之间的相互关系&#xff09; 3、物理结构&#xff08;数据逻辑结构在计算机中的存储形式&#xff09; 4、数据类型&#xff08;一组性质相同的值的集合及定义在此集合上的一些操作的总称&#xff09…

幻兽帕鲁服务器多少钱?2024年Palworld游戏主机费用

幻兽帕鲁服务器多少钱&#xff1f;价格便宜&#xff0c;阿里云4核16G幻兽帕鲁专属服务器32元1个月、66元3个月&#xff0c;4核32G配置113元1个月、339元3个月&#xff1b;腾讯云4核16G14M服务器66元1个月、277元3个月、1584元一年。阿腾云atengyun.com分享阿里云和腾讯云palwor…

Python算法题集_找到字符串中所有字母异位词

本文为Python算法题集之一的代码示例 题目438&#xff1a;找到字符串中所有字母异位词 说明&#xff1a;给定两个字符串 s 和 p&#xff0c;找到 s 中所有 p 的 异位词 的子串&#xff0c;返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字…

Java基础—面向对象OOP—18三大特性:封装、继承与多态

由于本身理解还不是很到位&#xff0c;所以写的很绕&#xff0c;后续待补充优化 1、封装&#xff08;底层&#xff09;&#xff1a;该露的露&#xff0c;该藏的藏 高内聚&#xff1a;类的内部数据操作细节自己完成&#xff0c;不允许外部干涉低耦合&#xff1a;仅暴露少量的方…

休息日的思考与额外题——链表

文章目录 前言链表知识点 一、 92. 反转链表 II二、21. 合并两个有序链表总结 前言 一个本硕双非的小菜鸡&#xff0c;备战24年秋招&#xff0c;计划二刷完卡子哥的刷题计划&#xff0c;加油&#xff01; 二刷决定精刷了&#xff0c;于是参加了卡子哥的刷题班&#xff0c;训练…

2023年算法SAO-CNN-BiLSTM-ATTENTION回归预测(matlab)

2023年算法SAO-CNN-BiLSTM-ATTENTION回归预测&#xff08;matlab&#xff09; SAO-CNN-BiLSTM-Attention雪消融优化器优化卷积-长短期记忆神经网络结合注意力机制的数据回归预测 Matlab语言。 雪消融优化器( SAO) 是受自然界中雪的升华和融化行为的启发&#xff0c;开发了一种…

Linux true/false区分

bash的数值代表和其它代表相反&#xff1a;0表示true&#xff1b;非0代表false。 #!/bin/sh PIDFILE"pid"# truenginx进程运行 falsenginx进程未运行 checkRunning(){# -f true表示普通文件if [ -f "$PIDFILE" ]; then# -z 字符串长度为0trueif [ -z &qu…

shell脚本——条件语句

目录 一、条件语句 1、test命令测试条件表达式 2、整数数值比较 3、字符串比较 4、逻辑测试&#xff08;短路运算&#xff09; 5、双中括号 二、if语句 1、 分支结构 1.1 单分支结果 1.2 双分支 1.3 多分支 2、case 一、条件语句 条件测试&#xff1a;判断某需求是…

IP关联是什么?有什么后果?如何防止电商账号因IP关联被封?

在跨境电商的世界里&#xff0c;IP关联给多账号运营的商家带来了挑战。比如&#xff0c;亚马逊IP关联规则的执行对于那些经营多个店铺的卖家来说可能是一个不小的障碍。IP关联的影响不只是限于亚马逊&#xff0c;其他平台如Instagram、Facebook也有类似的机制&#xff0c;在之前…

Note-归一化层和前向源码

本专栏主要是深度学习/自动驾驶相关的源码实现,获取全套代码请参考 目录 简介BN层计算过程参数说明验证问题:bn层前面的cov不需要bia的原因 LN层计算过程参数说明验证问题:transfomer用LN而不是BN的原因 简介 深度学习中常见的归一化层包括批量归一化&#xff08;Batch Norma…

应急响应-流量分析

在应急响应中&#xff0c;有时需要用到流量分析工具&#xff0c;。当需要看到内部流量的具体情况时&#xff0c;就需要我们对网络通信进行抓包&#xff0c;并对数据包进行过滤分析&#xff0c;最常用的工具是Wireshark。 Wireshark是一个网络封包分析软件。网络封包分析软件的…