Redis缓存雪崩&缓存击穿&缓存穿透
- 一 缓存更新策略
- 二 缓存雪崩
- 三 缓存击穿
- 四 缓存穿透
一 缓存更新策略
目前redis缓存更新存在3种主流策略,分别是:内存淘汰、超时剔除、主动更新。
1、内存淘汰
LRU/LFU/FIFO算法剔除:例如maxmemory-policy(到了最大内存,对应的应对策略)。
LRU -Least Recently Used,没有被使用时间最长的。
LFU -Least Frequenty User,一定时间段内使用次数最少的。
FIFO -First In First Out,先进先出。
LIRS (Low Inter-reference Recency Set)是一个页替换算法,相比于LRU(Least Recently Used)和很多其他的替换算法,LIRS具有较高的性能。这是通过使用两次访问同一页之间的距离(本距离指中间被访问了多少非重复块)作为一种尺度去动态地将访问页排序,从而去做一个替换的选择。
# LRU配置
maxmemory-policy:volatile-lru
(1)noeviction: 如果内存使用达到了maxmemory,client还要继续写入数据,那么就直接报错给客户端
(2)allkeys-lru: 就是我们常说的LRU算法,移除掉最近最少使用的那些keys对应的数据,ps最长用的策略
(3)volatile-lru: 也是采取LRU算法,但是仅仅针对那些设置了指定存活时间(TTL)的key才会清理掉
(4)allkeys-random: 随机选择一些key来删除掉
(5)volatile-random: 随机选择一些设置了TTL的key来删除掉
(6)volatile-ttl: 移除掉部分keys,选择那些TTL时间比较短的keys
# LFU配置 Redis4.0之后为maxmemory_policy淘汰策略添加了两个LFU模式:
volatile-lfu:对有过期时间的key采用LFU淘汰算法
allkeys-lfu:对全部key采用LFU淘汰算法
# 还有2个配置可以调整LFU算法:
lfu-log-factor 10
lfu-decay-time 1
# lfu-log-factor可以调整计数器counter的增长速度,lfu-log-factor越大,counter增长的越慢。
# lfu-decay-time是一个以分钟为单位的数值,可以调整counter的减少速度
一致性:差
维护成本:无
2、超时剔除
给缓存数据添加有效时间,到期后自动删除缓存。下次查询时更新缓存。
一致性:一般
维护成本:低(只用编写一个添加时间的代码)
3、主动更新
编写业务逻辑,在修改数据库的同时,更新缓存。
一致性:好
维护成本:高(需要编写整套业务逻辑代码)
二 缓存雪崩
通常我们为了保证缓存中的数据与数据库中的数据一致性,会给 Redis 里的数据设置过期时间,当缓存数据过期后,用户访问的数据如果不在缓存里,业务系统需要重新生成缓存,因此就会访问数据库,并将数据更新到 Redis 里,这样后续请求都可以直接命中缓存。
当大量缓存数据在同一时间过期(失效)或者 Redis 故障宕机时,如果此时有大量的用户请求,都无法在 Redis 中处理,于是全部请求都直接访问数据库,从而导致数据库的压力骤增,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃,这就是缓存雪崩的问题。
解决方案:
针对大量数据同时过期而引发的缓存雪崩问题,常见的应对方法有下面这几种:
- 均匀设置过期时间;
- 互斥锁;
- 双 key 策略;
- 后台更新缓存;
1.均匀设置过期时间:如果要给缓存数据设置过期时间,应该避免将大量的数据设置成同一个过期时间。我们可以在对缓存数据设置过期时间时,给这些数据的过期时间加上一个随机数,这样就保证数据不会在同一时间过期。
2.互斥锁:当业务线程在处理用户请求时,如果发现访问的数据不在 Redis 里,就加个互斥锁,保证同一时间内只有一个请求来构建缓存(从数据库读取数据,再将数据更新到 Redis 里),当缓存构建完成后,再释放锁。未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。
实现互斥锁的时候,最好设置超时时间,不然第一个请求拿到了锁,然后这个请求发生了某种意外而一直阻塞,一直不释放锁,这时其他请求也一直拿不到锁,整个系统就会出现无响应的现象。
3.双 key 策略:我们对redis缓存key值使用两个key,主key会设置过期时间,备用key不会设置过期时间,相当于做了一个副本。
当业务线程访问不到主key时,就返回备用key的缓存数据,在跟新缓存时,同时更新两个key的缓存数据。
4.后台更新缓存:业务线程不再负责更新缓存,缓存也不设置有效期,而是让缓存“永久有效”,并将更新缓存的工作交由后台线程定时更新。
针对redis故障宕机
构建redis集群:如果 Redis 缓存的主节点故障宕机,从节点可以切换成为主节点,继续提供缓存服务,避免了由于 Redis 故障宕机而导致的缓存雪崩问题。
三 缓存击穿
我们的业务通常会有几个数据会被频繁地访问,比如秒杀活动,这类被频地访问的数据被称为热点数据。
如果缓存中的某个热点数据过期了,此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮,这就是缓存击穿的问题。
应对缓存击穿可以采取前面说到两种方案:
互斥锁方案:保证同一时间只有一个业务线程更新缓存,未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。
不给热点数据设置过期时间:由后台异步更新缓存,或者在热点数据准备要过期前,提前通知后台线程更新缓存以及重新设置过期时间;
四 缓存穿透
当发生缓存雪崩或击穿时,数据库中还是保存了应用要访问的数据,一旦缓存恢复相对应的数据,就可以减轻数据库的压力,而缓存穿透就不一样了。
当用户访问的数据,既不在缓存中,也不在数据库中,导致请求在访问缓存时,发现缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据,没办法构建缓存数据,来服务后续的请求。那么当有大量这样的请求到来时,数据库的压力骤增,这就是缓存穿透的问题。
缓存穿透的发生一般有这两种情况:
- 业务误操作,缓存中的数据和数据库中的数据都被误删除了,所以导致缓存和数据库中都没有数据;
- 黑客恶意攻击,故意大量访问某些读取不存在数据的业务;
应对缓存穿透的方案,常见的方案有三种
- 非法请求的限制;
- 缓存空值或者默认值;
- 使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在;
非法请求的限制:当有大量恶意请求访问不存在的数据的时候,也会发生缓存穿透,因此在 API 入口处我们要判断求请求参数是否合理,请求参数是否含有非法值、请求字段是否存在,如果判断出是恶意请求就直接返回错误,避免进一步访问缓存和数据库。
缓存空值或者默认值:当我们线上业务发现缓存穿透的现象时,可以针对查询的数据,在缓存中设置一个空值或者默认值,这样后续请求就可以从缓存中读取到空值或者默认值,返回给应用,而不会继续查询数据库。
使用布隆过滤器:我们可以在写入数据库数据时,使用布隆过滤器做个标记,然后在用户请求到来时,业务线程确认缓存失效后,可以通过查询布隆过滤器快速判断数据是否存在,如果不存在,就不用通过查询数据库来判断数据是否存在。
即使发生了缓存穿透,大量请求只会查询 Redis 和布隆过滤器,而不会查询数据库,保证了数据库能正常运行,Redis 自身也是支持布隆过滤器的。
布隆过滤器
布隆过滤器由「初始值都为 0 的位图数组」和「 N 个哈希函数」两部分组成。当我们在写入数据库数据时,在布隆过滤器里做个标记,这样下次查询数据是否在数据库时,只需要查询布隆过滤器,如果查询到数据没有被标记,说明不在数据库中。
布隆过滤器会通过 3 个操作完成标记:
- 第一步,使用 N 个哈希函数分别对数据做哈希计算,得到 N 个哈希值;
- 第二步,将第一步得到的 N 个哈希值对位图数组的长度取模,得到每个哈希值在位图数组的对应位置。
- 第三步,将每个哈希值在位图数组的对应位置的值设置为 1;
总结
缓存异常会面临的三个问题:缓存雪崩、击穿和穿透。
其中,缓存雪崩和缓存击穿主要原因是数据不在缓存中,而导致大量请求访问了数据库,数据库压力骤增,容易引发一系列连锁反应,导致系统奔溃。不过,一旦数据被重新加载回缓存,应用又可以从缓存快速读取数据,不再继续访问数据库,数据库的压力也会瞬间降下来。因此,缓存雪崩和缓存击穿应对的方案比较类似。
而缓存穿透主要原因是数据既不在缓存也不在数据库中。因此,缓存穿透与缓存雪崩、击穿应对的方案不太一样。