深入理解TCP网络协议(1)

news2025/1/13 10:17:41

目录

1.TCP协议的段格式

2.TCP原理

2.1确认应答

2.2超时重传

3.三次握手(重点)

4.四次挥手

1.TCP协议的段格式

我们先来观察一下TCP协议的段格式图解:

源/目的端口号:标识数据从哪个进程来,到哪个进程去

32位序号/32位确认号:TCP会话的每一端都包含一个32位(bit)的序列号,该序列号被用来跟踪该端发送的数据量。每一个包中都包含序列号,在接收端则通过确认号用来通知发送端数据成功接收

4位TCP报头长度:表示该TCP头部有多少个32位bit(有多少个4字节),所以TCP头部最大的长度是15*4=60 

6位标志位:

URG:紧急指针是否有效

ACK:确认号是否有效

PSH:提示接收端应用程序立刻从TCP缓冲区中把数据读走

RST:要求对方重新连接,我们把携带RST表示的称为复位报文段

SYN:请求建立连接,我们把携带SYN标识的称为同步报文段

FIN:通知对方,本端要关闭了.我们称携带FIN的叫结束报文段

16位校验和:发送端填充,CRC校验,如果接受端校验不通过,则认为数据有问题,这里的校验和不仅仅有TCP首部,也包含的有TCP数据部分

16位紧急指针:标识哪部分数据是紧急数据

40位头部选项和16位窗口大小;我会在后面的博客中详细介绍

2.TCP原理

TCP协议对于数据的管控主要有两个方面:安全和效率

在保证安全的时候,尽可能的提升效率

TCP是如何保证安全的呢,这就要涉及到我们的确认应答机制

2.1确认应答

我们用一张图来描述一下:

TCP协议对每个字节都进行了编号,有与之对应的序列号,当发送数据包到另一端以后,另一端就会确认应答发送应该数据包的最后一位+1,回馈给发送方,发送方下一次就以这个序列号为开始接着发.

2.2超时重传

在数据发送到接收方,没有得到及时响应的时候,就会触发超时重传机制.这也是TCP能保证安全的重要机制.

超时重传有以下两种情况:

1.数据发送给接收端的时候丢包

2.接收端确认应答的时候数据丢包,发送方不清楚数据是否到达,也会触发超时重传

这种情况,接收方会受到重复的数据,所以TCP协议会始别重复的包,并且把多余的给丢弃掉.

这时候我们就可以使用序列号来区分是不是相同的数据,很容易做到去重的效果.

那么这个超时重传的超时,具体时间如何确定呢?

如果时间太长的话,就会影响性能,而时间太短的话,极有可能会造成大量的重复包,造成资源浪费.

TCP协议为了兼顾到这两者,会动态的计算这个最大时间.

在Linux中(windows中也是如此),会以500ms为一个单位去控制,每次判定超时重传的时间都是这个数值的整数倍,如果依旧没有得到应答,就会在2*500ms的时间后再次重传,以此类推,每次都是上一次的两倍,但是如果时间过长又会发生什么呢?

答案是TCP会认为网络出现了问题,强制关闭连接.

3.三次握手(重点)

我们来深入理解,通过画图的方式来生动形象的的描述一下三次握手这个过程.

有的同学可能会有疑惑了,这明明是四次握手,为什么说是三次呢?实际上,第二次和第三次刚好一个在TCP协议格式第二位和第五位,刚好这两个可以一起发送过去,而TCP协议也确实是这样做的.

那么TCP协议的三次握手有什么好处呢?为什么不是两次不是四次,而偏偏是三次?且容我细细道来.

1.可以起到"投石问路"的效果,判断网络是否通畅,这个就像行军打仗的时候,前面的先锋部队会先去前面探路,确定路上没有阻碍了,后面的大部队才会跟着上来.

2.让发送端和接收端都能明白自己和对方的发送接收功能是否是好的.

比如在第一次握手的时候,接收端既然能收到请求就会知道 自己的接收功能莫问题,而发送端的发送功能莫问题

在第二次握手的时候,接收端返回一个应答报文和一个请求连接报文,接收端收到了以后,就知道自己的发送功能和接收功能都没问题.会回给接收端一个应答报文.

第三次握手的时候,接收端收到发送端的应答报文,就明白自己的发送功能和对方的接收功能都是好的.

这样,双方都明白自己和对方的发送功能和接收功能都是否完好.

如果是两次握手,那么就只是在我们上面提到的第二次握手,这样,接收端就不知道自己的发送功能和发送端的接收功能是不是好的,起不到我们想要的效果.

而三次握手已经满足了我们的需求,如果是四次或者多次,虽然也能做到,但是多余了,没有必要在做这么多重复没有意义的工作

4.四次挥手

四次挥手是客户端和服务器端断开连接的一个过程

 和三次握手不同的是,四次挥手不仅仅可以是客户端向服务器端发起,服务器端也可以向客户端发起.

三次握手建立连接的本质就是,客户端和服务器端都保存对端的信息,而断开连接则是在数据结构中删除这些信息.我们先用一张图来观察一下四次挥手的过程.

有兄弟可能会问了,凭什么三次握手就可以把中间的两次合并在一起,而四次挥手却不行呢?

这个问题的原因是因为,三次握手的时候,中间服务器确认应答ack和同步报文段syn都是在操作系统内核中完成的,它百分之百都可以同步的完成,所以可以一起发给客户端,

而四次挥手中,ack是在FIN过来以后立刻又内核给返回,而第二个FIN是由代码来完成的,在Java中就是调用了socket.close()方法来完成,如果代码逻辑很长,运行的时间长的话,这两个是不可能同时在一起发送过去,所以这个事并不是百分之百的,尽管有可能合并,但我们通常情况下,把断开连接的这种操作还是称之为四次挥手

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1417286.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分布式ID(3):雪花算法生成ID之UidGenerator(百度开源的分布式唯一ID生成器)

1 UidGenerator官方地址 UidGenerator源码地址: https://github.com/baidu/uid-generator UidGenerator官方说明文档地址: https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md 这边只做简单介绍,详细说明请看官方说明文档。 2 Snowflake算法 Snowfl…

「 典型安全漏洞系列 」08.文件上传漏洞详解

文件上传功能可被攻击者用作一系列高严重性攻击的强大载体。本文最后将会展示如何绕过常见的防御机制来上传web shell,使你能够完全控制一个易受攻击的web服务器。 1. 简介 文件上传漏洞是指web服务器允许用户在没有充分验证文件名、类型、内容或大小等信息的情况下…

OJ_糖果分享游戏

题干 c实现 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<vector> using namespace std;void ShareCandy(vector<int>& student) {int size student.size();vector<int> share(size); //保存每个同学交换前&#xff0c;糖果数量…

(java)idel中将对与json的相互转

1、目录结构 2、导入包 在模块下面建立lib目录将包导入模块中 包的百度网盘 链接&#xff1a;https://pan.baidu.com/s/1abNF8cOTeNb00rM7tp04iQ?pwd39wc 提取码&#xff1a;39wc 3、建立两个测试类person和dog类 public class Dog {private String name;private int age…

TypeScript(四) 运算符

1. 运算符 1.1. 描述 运算符用于执行程序代码运算。 1.2. 运算符主要包括&#xff1a; &#xff08;1&#xff09;算术运算符 &#xff08;2&#xff09;逻辑运算符 &#xff08;3&#xff09;关系运算符 &#xff08;4&#xff09;按位运算符 &#xff08;5&#xff09;赋值…

C#算法(11)—求三个点构成圆的圆心坐标和半径

前言 我们在上位机开发领域也经常会碰到根据三个点求出圆的圆心、半径等信息的场景,本文就是详细的介绍如何根据三个点使用C#代码求出三点构成的圆的圆心坐标、圆半径、三点构成的圆弧的角度。 1、3点求圆分析 A、B、C三个点都是圆上的坐标点,过向量AB做中垂线,过向量AC做…

STP生成树协议实验

实验大纲 一、什么是生成树协议 二、生成树原理 1.STP工作原理 2.STP主要参数 3.STP根网桥 4.STP协议版本 三、实验 1.构建网络拓扑结构图 2.配置IP地址&#xff08;8台PC机&#xff09;&#xff1a;192.168.7.1~192.168.7.8 3.配置SW1 4.配置SW2 5.配置SW3 6.配置…

【英语趣味游戏】填字谜(Crossword)第1天

谜题出处 柯林斯字谜大全&#xff08;6&#xff09;&#xff0c;Collins——Big Book of Crosswords&#xff08;Book 6&#xff09; Puzzle Number: 114 本期单词 横向 1、Situation involving danger (4) 包含危险的情境&#xff0c;4个字母 答案&#xff1a;Risk&#xff…

第十一章 Linux实际操作——进程管理(重点)

第十一章 Linux实际操作——进程管理&#xff08;重点&#xff09; 11.1 基本介绍11.2 显示系统执行的进程11.2.1 基本介绍11.2.2 ps详解11.2.3 应用实例 11.3 终止进程kill和killall11.3.1 介绍11.3.2 基本语法11.3.3 常用选项11.3.4 最佳实践 11.4查看进程树pstree11.4.1 基本…

微服务-微服务Spring-cloud-open-feign

1. LoadBalancerRestTemplate的缺陷 LoadBalancerRestTemplate进行微服务调用 BeanLoadBalancedpublic RestTemplate restTemplate() {return new RestTemplate();}//调用方式String url "http://mall-order/order/findOrderByUserId/"id;R result restTemplate.…

路由进阶

文章目录 1.路由的封装抽离2.声明式导航 - 导航链接3.声明式导航-两个类名自定义匹配的类名 4.声明式导航 - 跳转传参查询参数传参动态路传参两种传参方式的区别动态路由参数可选符 5.Vue路由 - 重定向6.Vue路由 - 4047.Vue路由 - 模式设置8.编程式导航 - 两种路由跳转9.编程式…

Nginx负载均衡下的webshell连接

一、WebShell简介 “web”的含义是显然 需要服务器开放web服务&#xff0c;“shell”的含义是 取得对服务器某种程度上操作权限。 webshell&#xff0c;顾名思义&#xff1a;web指的是在web服务器上&#xff0c;而shell是用脚本语言编写的脚本程序&#xff0c;webshell就是就…

漏洞原理MySQL注入布尔盲注入

1 判断MySql注入点是否存在 利用盲注入的方式 http://127.0.0.1/news/show.php?id46 and 11 # 正常显示 http://127.0.0.1/news/show.php?id46 and 12 # 不显示 2 获取数据库的长度 http://127.0.0.1/news/show.php?id46 and length(database())n n的范围是从 1 开始 h…

Kotlin快速入门4

Kotlin的类与对象 类的定义 Kotlin使用关键字class来声明类。后面紧跟类名字&#xff1a; class LearnKotlin { //类名&#xff1a;LearnKotlin//... } Kotlin的类可以包含&#xff1a;构造函数和初始化代码块、函数、属性、内部类、对象声明。当然&#xff0c;也可以定义一…

BGP:05 BGP自动路由汇总

路由汇总&#xff0c;能有效地减少 BGP 路由器通告的路由条目数量&#xff0c;减小设备的路由表规模&#xff0c;并将拓扑变化产生的影响限制在一个相对更小的范围内。 自动路由聚合是在自然边界路由器上自动执行的&#xff0c;在默认情况下&#xff0c;BGP的自动路由聚合功能是…

go包与依赖管理

包&#xff08;package&#xff09; 包介绍 Go语言中支持模块化的开发理念&#xff0c;在Go语言中使用包&#xff08;package&#xff09;来支持代码模块化和代码复用。一个包是由一个或多个Go源码文件&#xff08;.go结尾的文件&#xff09;组成&#xff0c;是一种高级的代码…

springboot134英语知识应用网站的设计与实现

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

深度强化学习(王树森)笔记07

深度强化学习&#xff08;DRL&#xff09; 本文是学习笔记&#xff0c;如有侵权&#xff0c;请联系删除。本文在ChatGPT辅助下完成。 参考链接 Deep Reinforcement Learning官方链接&#xff1a;https://github.com/wangshusen/DRL 源代码链接&#xff1a;https://github.c…

C++多线程2(复习向)

lock_guard lock_guard是C中提供的对互斥锁有关操作的高级接口&#xff0c;可对互斥锁进行自动上锁和解锁&#xff0c;多用于作为局部变量。&#xff08;在对象创建时&#xff0c;构造函数中自动为传入的互斥锁对象上锁&#xff0c;局部变量被系统回收时&#xff0c;其析构函数…

消失的数字(c语言多种解法)

题目 该题目取自力扣&#xff08;LeetCode&#xff09;面试题 17.04. 消失的数字 该题目主要考察时间复杂度的把握&#xff0c;题目如下&#xff1a; 数组nums包含从0到n的所有整数&#xff0c;但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(n)时间内完成吗&a…