《动手学深度学习(PyTorch版)》笔记4.1

news2024/11/19 4:26:25

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过。

Chapter4 Multilayer Perceptron

4.1 Basic Concepts

4.1.1 Hidden Layer

我们在第三章中描述了仿射变换,它是一种带有偏置项的线性变换。如果我们的标签通过仿射变换后确实与我们的输入数据相关,那么这种方法确实足够了。但是,仿射变换中的线性是一个很强的假设。线性意味着单调假设:任何特征的增大都会导致模型输出的增大(如果对应的权重为正),或者导致模型输出的减小(如果对应的权重为负)。有时这是有道理的。例如,如果我们试图预测一个人是否会偿还贷款。我们可以认为,在其他条件不变的情况下,收入较高的申请人比收入较低的申请人更有可能偿还贷款。但是,虽然收入与还款概率存在单调性,但它们不是线性相关的。收入从0增加到5万,可能比从100万增加到105万带来更大的还款可能性。处理这一问题的一种方法是对我们的数据进行预处理,使线性变得更合理,如使用收入的对数作为我们的特征。

然而我们可以很容易找出违反单调性的例子。例如,我们想要根据体温预测死亡率。对体温高于37摄氏度的人来说,温度越高风险越大。然而,对体温低于37摄氏度的人来说,温度越高风险就越低。在这种情况下,我们也可以通过一些巧妙的预处理来解决问题。例如,我们可以使用与37摄氏度的距离作为特征。

与我们前面的例子相比,这里的线性很荒谬,而且我们难以通过简单的预处理来解决这个问题。我们的数据可能会有一种表示,这种表示会考虑到我们在特征之间的相关交互作用。在此表示的基础上建立一个线性模型可能会是合适的,但我们不知道如何手动计算这么一种表示。对于深度神经网络,我们使用观测数据来联合学习隐藏层表示和应用于该表示的线性预测器。

我们可以通过在网络中加入一个或多个隐藏层来克服线性模型的限制,使其能处理更普遍的函数关系类型。要做到这一点,最简单的方法是将许多全连接层堆叠在一起。每一层都输出到上面的层,直到生成最后的输出。我们可以把前 L − 1 L-1 L1层看作表示,把最后一层看作线性预测器。这种架构通常称为多层感知机(multilayer perceptron),通常缩写为MLP,下面我们以图的方式描述了多层感知机。

在这里插入图片描述

这个多层感知机有4个输入,3个输出,其隐藏层包含5个隐藏单元。输入层不涉及任何计算,因此使用此网络产生输出只需要实现隐藏层和输出层的计算。因此,这个多层感知机中的层数为2。注意,这两个层都是全连接的。每个输入都会影响隐藏层中的每个神经元,而隐藏层中的每个神经元又会影响输出层中的每个神经元。

然而,具有全连接层的多层感知机的参数开销可能会高得令人望而却步,即使在不改变输入或输出大小的情况下,可能在参数节约和模型有效性之间进行权衡。

同之前的章节一样,我们通过矩阵 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} XRn×d来表示 n n n个样本的小批量,其中每个样本具有 d d d个输入特征。对于具有 h h h个隐藏单元的单隐藏层多层感知机,用 H ∈ R n × h \mathbf{H} \in \mathbb{R}^{n \times h} HRn×h表示隐藏层的输出,称为隐藏表示(hidden representations)。在数学或代码中, H \mathbf{H} H也被称为隐藏层变量(hidden-layer variable)或隐藏变量(hidden variable)。因为隐藏层和输出层都是全连接的,所以我们有隐藏层权重 W ( 1 ) ∈ R d × h \mathbf{W}^{(1)} \in \mathbb{R}^{d \times h} W(1)Rd×h和隐藏层偏置 b ( 1 ) ∈ R 1 × h \mathbf{b}^{(1)} \in \mathbb{R}^{1 \times h} b(1)R1×h以及输出层权重 W ( 2 ) ∈ R h × q \mathbf{W}^{(2)} \in \mathbb{R}^{h \times q} W(2)Rh×q和输出层偏置 b ( 2 ) ∈ R 1 × q \mathbf{b}^{(2)} \in \mathbb{R}^{1 \times q} b(2)R1×q。形式上,我们按如下方式计算单隐藏层多层感知机的输出 O ∈ R n × q \mathbf{O} \in \mathbb{R}^{n \times q} ORn×q

H = X W ( 1 ) + b ( 1 ) , O = H W ( 2 ) + b ( 2 ) . \begin{aligned} \mathbf{H} & = \mathbf{X} \mathbf{W}^{(1)} + \mathbf{b}^{(1)}, \\ \mathbf{O} & = \mathbf{H}\mathbf{W}^{(2)} + \mathbf{b}^{(2)}. \end{aligned} HO=XW(1)+b(1),=HW(2)+b(2).

注意在添加隐藏层之后,模型现在需要跟踪和更新额外的参数。可我们能从中得到什么好处呢?在上面定义的模型里,我们没有好处!原因很简单:上面的隐藏单元由输入的仿射函数给出,而输出(softmax操作前)只是隐藏单元的仿射函数。仿射函数的仿射函数本身就是仿射函数,但是我们之前的线性模型已经能够表示任何仿射函数。对于这个例子,证明如下:

O = ( X W ( 1 ) + b ( 1 ) ) W ( 2 ) + b ( 2 ) = X W ( 1 ) W ( 2 ) + b ( 1 ) W ( 2 ) + b ( 2 ) = X W + b . \mathbf{O} = (\mathbf{X} \mathbf{W}^{(1)} + \mathbf{b}^{(1)})\mathbf{W}^{(2)} + \mathbf{b}^{(2)} = \mathbf{X} \mathbf{W}^{(1)}\mathbf{W}^{(2)} + \mathbf{b}^{(1)} \mathbf{W}^{(2)} + \mathbf{b}^{(2)} = \mathbf{X} \mathbf{W} + \mathbf{b}. O=(XW(1)+b(1))W(2)+b(2)=XW(1)W(2)+b(1)W(2)+b(2)=XW+b.

为了发挥多层架构的潜力,我们还需要一个额外的关键要素:在仿射变换之后对每个隐藏单元应用非线性的激活函数(activation function) σ \sigma σ。激活函数的输出(例如, σ ( ⋅ ) \sigma(\cdot) σ())被称为活性值(activations)。一般来说,有了激活函数,就不可能再将我们的多层感知机退化成线性模型:

H = σ ( X W ( 1 ) + b ( 1 ) ) , O = H W ( 2 ) + b ( 2 ) . \begin{aligned} \mathbf{H} & = \sigma(\mathbf{X} \mathbf{W}^{(1)} + \mathbf{b}^{(1)}), \\ \mathbf{O} & = \mathbf{H}\mathbf{W}^{(2)} + \mathbf{b}^{(2)}.\\ \end{aligned} HO=σ(XW(1)+b(1)),=HW(2)+b(2).

由于 X \mathbf{X} X中的每一行对应于小批量中的一个样本,出于记号习惯的考量,我们定义非线性函数 σ \sigma σ也以按行的方式作用于其输入,即一次计算一个样本。本节应用于隐藏层的激活函数通常不仅按行操作,也按元素操作。这意味着在计算每一层的线性部分之后,我们可以计算每个活性值,而不需要查看其他隐藏单元所取的值,对于大多数激活函数都是这样。

为了构建更通用的多层感知机,我们可以继续堆叠这样的隐藏层,例如 H ( 1 ) = σ 1 ( X W ( 1 ) + b ( 1 ) ) \mathbf{H}^{(1)} = \sigma_1(\mathbf{X} \mathbf{W}^{(1)} + \mathbf{b}^{(1)}) H(1)=σ1(XW(1)+b(1)) H ( 2 ) = σ 2 ( H ( 1 ) W ( 2 ) + b ( 2 ) ) \mathbf{H}^{(2)} = \sigma_2(\mathbf{H}^{(1)} \mathbf{W}^{(2)} + \mathbf{b}^{(2)}) H(2)=σ2(H(1)W(2)+b(2)),一层叠一层,从而产生更有表达能力的模型。

多层感知机可以通过隐藏神经元,捕捉到输入之间复杂的相互作用,这些神经元依赖于每个输入的值。我们可以很容易地设计隐藏节点来执行任意计算。例如,在一对输入上进行基本逻辑操作,多层感知机是通用近似器。即使是网络只有一个隐藏层,给定足够的神经元和正确的权重,我们可以对任意函数建模,尽管实际中学习该函数是很困难的(通用近似定理)
虽然一个单隐层网络能学习任何函数,但并不意味着我们应该尝试使用单隐藏层网络来解决所有问题。事实上,通过使用更深(而不是更广)的网络,我们可以更容易地逼近许多函数。我们将在后面的章节中进行更细致的讨论。

4.1.2 Activation Function

激活函数(activation function)通过计算加权和并加上偏置来确定神经元是否应该被激活,它们将输入信号转换为输出的可微运算。大多数激活函数都是非线性的。激活函数是深度学习的基础,下面介绍一些常见的激活函数。

4.1.2.1 ReLU function

最受欢迎的激活函数是修正线性单元(Rectified linear unit,ReLU),因为它实现简单,同时在各种预测任务中表现良好。ReLU提供了一种非常简单的非线性变换,给定元素 x x x,ReLU函数被定义为该元素与 0 0 0的最大值:

ReLU ⁡ ( x ) = max ⁡ ( x , 0 ) . \operatorname{ReLU}(x) = \max(x, 0). ReLU(x)=max(x,0).

如图,激活函数是分段线性的。
在这里插入图片描述

当输入为负时,ReLU函数的导数为0,而当输入为正时,ReLU函数的导数为1。注意,当输入值精确等于0时,ReLU函数不可导。在此时,我们默认使用左侧的导数,即当输入为0时导数为0。我们可以忽略这种情况,因为输入可能永远都不会是0,正如一句名言所说,“如果微妙的边界条件很重要,我们很可能是在研究数学而非工程”。ReLU函数的导数图像如下:
在这里插入图片描述

使用ReLU的原因是,它求导表现得特别好:要么让参数消失,要么让参数通过。这使得优化表现得更好,并且ReLU减轻了困扰以往神经网络的梯度消失问题(稍后将详细介绍)。

ReLU函数有许多变体,包括参数化ReLU(Parameterized ReLU,pReLU)函数,该变体为ReLU添加了一个线性项,因此即使参数是负的,某些信息仍然可以通过:

pReLU ⁡ ( x ) = max ⁡ ( 0 , x ) + α min ⁡ ( 0 , x ) . \operatorname{pReLU}(x) = \max(0, x) + \alpha \min(0, x). pReLU(x)=max(0,x)+αmin(0,x).

4.1.2.2 Sigmoid function

sigmoid通常称为挤压函数(squashing function),因为它将范围(-inf, inf)中的任意输入压缩到区间(0, 1)中的某个值:

sigmoid ⁡ ( x ) = 1 1 + exp ⁡ ( − x ) . \operatorname{sigmoid}(x) = \frac{1}{1 + \exp(-x)}. sigmoid(x)=1+exp(x)1.

当人们逐渐关注到到基于梯度的学习时,sigmoid函数是一个自然的选择,因为它是一个平滑的、可微的阈值单元近似。当我们想要将输出视作二元分类问题的概率时,sigmoid仍然被广泛用作输出单元上的激活函数(sigmoid可以视为softmax的特例)。然而,sigmoid在隐藏层中已经较少使用,
它在大部分时候被更简单、更容易训练的ReLU所取代。在后面关于循环神经网络的章节中,我们将描述利用sigmoid单元来控制时序信息流的架构。

sigmoid函数图像如下:

在这里插入图片描述

sigmoid函数的导数为:

d d x sigmoid ⁡ ( x ) = exp ⁡ ( − x ) ( 1 + exp ⁡ ( − x ) ) 2 = sigmoid ⁡ ( x ) ( 1 − sigmoid ⁡ ( x ) ) . \frac{d}{dx} \operatorname{sigmoid}(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2} = \operatorname{sigmoid}(x)\left(1-\operatorname{sigmoid}(x)\right). dxdsigmoid(x)=(1+exp(x))2exp(x)=sigmoid(x)(1sigmoid(x)).

sigmoid函数的导数图像如下:
在这里插入图片描述

4.1.2.3 tanh function

与sigmoid函数类似,tanh(双曲正切)函数能将其输入压缩转换到区间(-1, 1)上。tanh函数的公式如下:

tanh ⁡ ( x ) = 1 − exp ⁡ ( − 2 x ) 1 + exp ⁡ ( − 2 x ) . \operatorname{tanh}(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}. tanh(x)=1+exp(2x)1exp(2x).

tanh函数的形状类似于sigmoid函数,不同的是tanh函数关于坐标系原点中心对称。其函数图像如下:
在这里插入图片描述

tanh函数的导数是:

d d x tanh ⁡ ( x ) = 1 − tanh ⁡ 2 ( x ) . \frac{d}{dx} \operatorname{tanh}(x) = 1 - \operatorname{tanh}^2(x). dxdtanh(x)=1tanh2(x).

tanh函数的导数图像如下:

在这里插入图片描述

本节代码如下:

import matplotlib.pyplot as plt
import torch
from d2l import torch as d2l

#绘制ReLU函数图像
x=torch.arange(-8,8,0.1,requires_grad=True)
y=torch.relu(x)
d2l.plot(x.detach(),y.detach(),'x','relu(x)',figsize=(5,2.5))
#"detach()" is used to create a new tensor that shares the same data with x but doesn't have a computation graph
plt.show()

#绘制ReLU函数的导数图像
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(),x.grad,'x','grad of relu(x)',figsize=(5,2.5))
#torch.ones_like(x): creates a tensor of the same shape as x but filled with ones. This tensor is used as the gradient of the output y with respect to x during backpropagation
#retain_graph=True: retains the computational graph after performing the backward pass
plt.show()

#绘制sigmoid函数图像
y=torch.sigmoid(x)
d2l.plot(x.detach(),y.detach(),'x','sigmoid(x)',figsize=(5,2.5))
plt.show()

#绘制sigmoid函数的导数图像
x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(),x.grad,'x','grad of sigmoid(x)',figsize=(5,2.5))
plt.show()

#绘制tanh函数图像
y=torch.tanh(x)
d2l.plot(x.detach(),y.detach(),'x','tanh(x)',figsize=(5,2.5))
plt.show()

#绘制tanh函数的导数图像
x.grad.data.zero_()
y.backward(torch.ones_like(x),retain_graph=True)
d2l.plot(x.detach(),x.grad,'x','grad of tanh(x)',figsize=(5,2.5))
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1413316.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

万界星空科技可视化数据大屏的作用

随着科技的不断发展和进步,当前各种数据化的设备也是如同雨后春笋般冒了出来,并且其可以说是给我们带来了极大的便利的。在这其中,数据大屏就是非常具有代表性的一个例子。 数据大屏的主要作用包括: 数据分析:数据大屏…

k8s 进阶实战笔记 | Pod 创建过程详解

Pod 创建过程详解 ​ 初始状态0 controller-manager、scheduler、kubelet组件通过 list-watch 机制与 api-server 通信并检查资源变化 第一步 用户通过 CLI 或者 WEB 端等方式向 api-server 发送创建资源的请求(比如:我要创建一个replicaset资源&…

【七、centos要停止维护了,我选择Almalinux】

搜索镜像 https://developer.aliyun.com/mirror/?serviceTypemirror&tag%E7%B3%BB%E7%BB%9F&keywordalmalinux dvd是有界面操作的,minimal是最小化只有命里行 镜像下载地址 安装和centos基本一样的,操作命令也是一样的,有需要我…

Redis创建集群

主要内容 搭建redis集群 能力目标 搭建redis集群 一 应用场景 为什么需要redis集群? 当主备复制场景,无法满足主机的单点故障时,需要引入集群配置。 一般数据库要处理的读请求远大于写请求 ,针对这种情况,我们优…

【C/C++】C/C++编程——C++ 关键字和数据类型简介

C 关键字和数据类型简介 大家好,我是 shopeeai,也可以叫我虾皮,中科大菜鸟研究生。昨天已经成功运行了第一个C程序,今天来学习一下C 关键字和数据类型。C 中的关键字是由 C 标准预先定义的。它们被保留作为语言的一部分&#xff…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-帖子管理实现

锋哥原创的SpringbootLayui python222网站实战: python222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程(SpringBootPython爬虫实战) ( 火…

Golang中make与new有何区别

📕作者简介: 过去日记,致力于Java、GoLang,Rust等多种编程语言,热爱技术,喜欢游戏的博主。 📗本文收录于go进阶系列,大家有兴趣的可以看一看 📘相关专栏Rust初阶教程、go语言基础系…

【新课上架】安装部署系列Ⅲ—Oracle 19c Data Guard部署之两节点RAC部署实战

01 课程介绍 Oracle Real Application Clusters (RAC) 是一种跨多个节点分布数据库的企业级解决方案。它使组织能够通过实现容错和负载平衡来提高可用性和可扩展性,同时提高性能。本课程基于当前主流版本Oracle 19cOEL7.9解析如何搭建2节点RAC对1节点单机的DATA GU…

滴滴基于 Ray 的 XGBoost 大规模分布式训练实践

背景介绍 作为机器学习模型的核心代表,XGBoost 在滴滴众多策略算法业务场景中发挥着至关重要的作用。因此,保障并持续提升 XGBoost 模型的离线训练及在线推理稳定性一直是机器学习平台的重点工作。同时,面对多样化的业务场景定制需求和数据规…

学习gin框架知识的注意点

这几天重新学习了一遍gin框架:收获颇多 Gin框架的初始化 有些项目中 初始化gin框架写的是: r : gin.New() r.Use(logger.GinLogger(), logger.GinRecovery(true)) 而不是r : gin.Default() 为什么呢? 点击进入Default源码发现其实他也是…

大数据就业方向-(工作)ETL开发

上一篇文章: 大数据 - 大数据入门第一篇 | 关于大数据你了解多少?-CSDN博客 目录 🐶1.ETL概念 🐶2. ETL的用处 🐶3.ETL实现方式 🐶4. ETL体系结构 🐶5. 什么是ETL技术? &…

Linux——搭建FTP服务器

1、FTP简介 FTP(File Transfer Protocol) :是一种处于应用层的用于文件传输的协议。FTP客户端和FTP服务器之间的通信使用TCP/IP协议族。它规定了客户端和服务器之间的通信格式和命令集,包括用户认证、文件传输、文件名和目录信息等,允许用户…

掌握可视化大屏:提升数据分析和决策能力的关键(下)

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Java - OpenSSL与国密OpenSSL

文章目录 一、定义 OpenSSL:OpenSSL是一个开放源代码的SSL/TLS协议实现,也是一个功能丰富的加密库,提供了各种主要的加密算法、常用的密钥和证书封装管理功能以及SSL协议。它被广泛应用于Web服务器、电子邮件服务器、VPN等网络应用中&#x…

dvwa靶场文件上传high

dvwa upload high 第一次尝试(查看是否是前端验证)第二次尝试我的上传思路最后发现是图片码上传修改配置文件尝试蚁🗡连接菜刀连接 第一次尝试(查看是否是前端验证) 因为我是初学者,所以无法从代码审计角度…

第14次修改了可删除可持久保存的前端html备忘录:增加一个翻牌钟,修改背景主题:现代深色

第14次修改了可删除可持久保存的前端html备忘录&#xff1a;增加一个翻牌钟&#xff0c;修改背景主题&#xff1a;现代深色 备忘录代码 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta http-equiv"X…

Scala基础知识

scala 1、scala简介 ​ scala是运行在JVM上的多范式编程语言&#xff0c;同时支持面向对象和面向函数式编程。 2、scala解释器 要启动scala解释器&#xff0c;只需要以下几步&#xff1a; 按住windows键 r输入scala即可 在scala命令提示窗口中执行:quit&#xff0c;即可退…

线扫相机使用教程

一.线扫相机的采集原理 在现有的工业 2D 相机中&#xff0c;主要有两种类型的相机&#xff0c;面阵相机和线扫相机。这两种相机有其 各自的特点。 面阵相机&#xff1a;主要用于采集较小尺寸的产品&#xff0c;特别是长度方向较小的产品。其采集原理是通过 单次或多次曝光&…

nav02 学习03 机器人传感器

机器人传感器 移动机器人配备了大量传感器&#xff0c;使它们能够看到和感知周围的环境。这些传感器获取的信息可用于构建和维护环境地图、在地图上定位机器人以及查看环境中的障碍物。这些任务对于能够安全有效地在动态环境中导航机器人至关重要。 机器人的传感器类似人的感官…

蓝桥杯备战——7.DS18B20温度传感器

1.分析原理图 通过上图我们可以看到DS18B20通过单总线接到了单片机的P14上。 2.查阅DS18B20使用手册 比赛的时候是会提供DS18B20单总线通讯协议的代码&#xff0c;但是没有提供读取温度数据的代码&#xff0c;所以还是需要我们去查看手册&#xff0c;我只把重要部分截下来了 …