某马头条——day11+day12

news2024/11/17 3:43:29

实时计算和定时计算 

流式计算

 

kafkaStream

入门案例

导入依赖

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-streams</artifactId>
    <exclusions>
        <exclusion>
            <artifactId>connect-json</artifactId>
            <groupId>org.apache.kafka</groupId>
        </exclusion>
        <exclusion>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
        </exclusion>
    </exclusions>
</dependency>

创建原生的kafka staream入门案例  

/**
 * 流式处理
 */
public class KafkaStreamQuickStart {

    public static void main(String[] args) {

        //kafka的配置信心
        Properties prop = new Properties();
        prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");
        prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"streams-quickstart");

        //stream 构建器
        StreamsBuilder streamsBuilder = new StreamsBuilder();

        //流式计算
        streamProcessor(streamsBuilder);


        //创建kafkaStream对象
        KafkaStreams kafkaStreams = new KafkaStreams(streamsBuilder.build(),prop);
        //开启流式计算
        kafkaStreams.start();
    }

    /**
     * 流式计算
     * 消息的内容:hello kafka  hello itcast
     * @param streamsBuilder
     */
    private static void streamProcessor(StreamsBuilder streamsBuilder) {
        //创建kstream对象,同时指定从那个topic中接收消息
        KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");
        /**
         * 处理消息的value
         */
        stream.flatMapValues(new ValueMapper<String, Iterable<String>>() {
            @Override
            public Iterable<String> apply(String value) {
                return Arrays.asList(value.split(" "));
            }
        })
                //按照value进行聚合处理
                .groupBy((key,value)->value)
                //时间窗口
                .windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
                //统计单词的个数
                .count()
                //转换为kStream
                .toStream()
                .map((key,value)->{
                    System.out.println("key:"+key+",vlaue:"+value);
                    return new KeyValue<>(key.key().toString(),value.toString());
                })
                //发送消息
                .to("itcast-topic-out");
    }
}

 SpringBoot集成kafka Stream

import lombok.Getter;
import lombok.Setter;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.Topology;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafkaStreams;
import org.springframework.kafka.annotation.KafkaStreamsDefaultConfiguration;
import org.springframework.kafka.config.KafkaStreamsConfiguration;

import java.util.HashMap;
import java.util.Map;

/**
 * 通过重新注册KafkaStreamsConfiguration对象,设置自定配置参数
 */

@Setter
@Getter
@Configuration
@EnableKafkaStreams
@ConfigurationProperties(prefix="kafka")
public class KafkaStreamConfig {
    private static final int MAX_MESSAGE_SIZE = 16* 1024 * 1024;
    private String hosts;
    private String group;
    @Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
    public KafkaStreamsConfiguration defaultKafkaStreamsConfig() {
        Map<String, Object> props = new HashMap<>();
        props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, hosts);
        props.put(StreamsConfig.APPLICATION_ID_CONFIG, this.getGroup()+"_stream_aid");
        props.put(StreamsConfig.CLIENT_ID_CONFIG, this.getGroup()+"_stream_cid");
        props.put(StreamsConfig.RETRIES_CONFIG, 10);
        props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        return new KafkaStreamsConfiguration(props);
    }
}
kafka:
  hosts: 192.168.200.130:9092
  group: ${spring.application.name}

@Configuration
@Slf4j
public class KafkaStreamHelloListener {

    @Bean
    public KStream<String,String> kStream(StreamsBuilder streamsBuilder){
        //创建kstream对象,同时指定从那个topic中接收消息
        KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");
        stream.flatMapValues(new ValueMapper<String, Iterable<String>>() {
            @Override
            public Iterable<String> apply(String value) {
                return Arrays.asList(value.split(" "));
            }
        })
                //根据value进行聚合分组
                .groupBy((key,value)->value)
                //聚合计算时间间隔
                .windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
                //求单词的个数
                .count()
                .toStream()
                //处理后的结果转换为string字符串
                .map((key,value)->{
                    System.out.println("key:"+key+",value:"+value);
                    return new KeyValue<>(key.key().toString(),value.toString());
                })
                //发送消息
                .to("itcast-topic-out");
        return stream;
    }
}

热点文章—实时计算

实现思路

实现步骤

用户行为收集

①在heima-leadnews-behavior微服务中集成kafka生产者配置

修改nacos,新增内容

spring:
  application:
    name: leadnews-behavior
  kafka:
    bootstrap-servers: 192.168.200.130:9092
    producer:
      retries: 10
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

②修改ApLikesBehaviorServiceImpl新增发送消息

定义消息发送封装类:UpdateArticleMess

package com.heima.model.mess;

import lombok.Data;

@Data
public class UpdateArticleMess {

    /**
     * 修改文章的字段类型
      */
    private UpdateArticleType type;
    /**
     * 文章ID
     */
    private Long articleId;
    /**
     * 修改数据的增量,可为正负
     */
    private Integer add;

    public enum UpdateArticleType{
        COLLECTION,COMMENT,LIKES,VIEWS;
    }
}

 topic常量类:

package com.heima.common.constants;

public class HotArticleConstants {

    public static final String HOT_ARTICLE_SCORE_TOPIC="hot.article.score.topic";
   
}

完整代码如下:  

package com.heima.behavior.service.impl;

import com.alibaba.fastjson.JSON;
import com.heima.behavior.service.ApLikesBehaviorService;
import com.heima.common.constants.BehaviorConstants;
import com.heima.common.constants.HotArticleConstants;
import com.heima.common.redis.CacheService;
import com.heima.model.behavior.dtos.LikesBehaviorDto;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.common.enums.AppHttpCodeEnum;
import com.heima.model.mess.UpdateArticleMess;
import com.heima.model.user.pojos.ApUser;
import com.heima.utils.thread.AppThreadLocalUtil;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;


@Service
@Transactional
@Slf4j
public class ApLikesBehaviorServiceImpl implements ApLikesBehaviorService {

    @Autowired
    private CacheService cacheService;

    @Autowired
    private KafkaTemplate<String,String> kafkaTemplate;

    @Override
    public ResponseResult like(LikesBehaviorDto dto) {

        //1.检查参数
        if (dto == null || dto.getArticleId() == null || checkParam(dto)) {
            return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
        }

        //2.是否登录
        ApUser user = AppThreadLocalUtil.getUser();
        if (user == null) {
            return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);
        }

        UpdateArticleMess mess = new UpdateArticleMess();
        mess.setArticleId(dto.getArticleId());
        mess.setType(UpdateArticleMess.UpdateArticleType.LIKES);

        //3.点赞  保存数据
        if (dto.getOperation() == 0) {
            Object obj = cacheService.hGet(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());
            if (obj != null) {
                return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID, "已点赞");
            }
            // 保存当前key
            log.info("保存当前key:{} ,{}, {}", dto.getArticleId(), user.getId(), dto);
            cacheService.hPut(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString(), JSON.toJSONString(dto));
            mess.setAdd(1);
        } else {
            // 删除当前key
            log.info("删除当前key:{}, {}", dto.getArticleId(), user.getId());
            cacheService.hDelete(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());
            mess.setAdd(-1);
        }

        //发送消息,数据聚合
        kafkaTemplate.send(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC,JSON.toJSONString(mess));


        return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);

    }

    /**
     * 检查参数
     *
     * @return
     */
    private boolean checkParam(LikesBehaviorDto dto) {
        if (dto.getType() > 2 || dto.getType() < 0 || dto.getOperation() > 1 || dto.getOperation() < 0) {
            return true;
        }
        return false;
    }
}

③修改阅读行为的类ApReadBehaviorServiceImpl发送消息

package com.heima.behavior.service.impl;

import com.alibaba.fastjson.JSON;
import com.heima.behavior.service.ApReadBehaviorService;
import com.heima.common.constants.BehaviorConstants;
import com.heima.common.constants.HotArticleConstants;
import com.heima.common.redis.CacheService;
import com.heima.model.behavior.dtos.ReadBehaviorDto;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.common.enums.AppHttpCodeEnum;
import com.heima.model.mess.UpdateArticleMess;
import com.heima.model.user.pojos.ApUser;
import com.heima.utils.thread.AppThreadLocalUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

@Service
@Transactional
@Slf4j
public class ApReadBehaviorServiceImpl implements ApReadBehaviorService {

    @Autowired
    private CacheService cacheService;

    @Autowired
    private KafkaTemplate<String,String> kafkaTemplate;

    @Override
    public ResponseResult readBehavior(ReadBehaviorDto dto) {
        //1.检查参数
        if (dto == null || dto.getArticleId() == null) {
            return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
        }

        //2.是否登录
        ApUser user = AppThreadLocalUtil.getUser();
        if (user == null) {
            return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);
        }
        //更新阅读次数
        String readBehaviorJson = (String) cacheService.hGet(BehaviorConstants.READ_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());
        if (StringUtils.isNotBlank(readBehaviorJson)) {
            ReadBehaviorDto readBehaviorDto = JSON.parseObject(readBehaviorJson, ReadBehaviorDto.class);
            dto.setCount((short) (readBehaviorDto.getCount() + dto.getCount()));
        }
        // 保存当前key
        log.info("保存当前key:{} {} {}", dto.getArticleId(), user.getId(), dto);
        cacheService.hPut(BehaviorConstants.READ_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString(), JSON.toJSONString(dto));

        //发送消息,数据聚合
        UpdateArticleMess mess = new UpdateArticleMess();
        mess.setArticleId(dto.getArticleId());
        mess.setType(UpdateArticleMess.UpdateArticleType.VIEWS);
        mess.setAdd(1);
        kafkaTemplate.send(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC,JSON.toJSONString(mess));
        
        
        return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);

    }
}

 流式聚合处理

①在leadnews-article微服务中集成kafkaStream (参考kafka-demo)

②定义实体类,用于聚合之后的分值封装

package com.heima.model.article.mess;

import lombok.Data;

@Data
public class ArticleVisitStreamMess {
    /**
     * 文章id
     */
    private Long articleId;
    /**
     * 阅读
     */
    private int view;
    /**
     * 收藏
     */
    private int collect;
    /**
     * 评论
     */
    private int comment;
    /**
     * 点赞
     */
    private int like;
}

修改常量类:增加常量

package com.heima.common.constans;

public class HotArticleConstants {

    public static final String HOT_ARTICLE_SCORE_TOPIC="hot.article.score.topic";
    public static final String HOT_ARTICLE_INCR_HANDLE_TOPIC="hot.article.incr.handle.topic";
}

③ 定义stream,接收消息并聚合

package com.heima.article.stream;

import com.alibaba.fastjson.JSON;
import com.heima.common.constants.HotArticleConstants;
import com.heima.model.mess.ArticleVisitStreamMess;
import com.heima.model.mess.UpdateArticleMess;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.kstream.*;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.time.Duration;

@Configuration
@Slf4j
public class HotArticleStreamHandler {

    @Bean
    public KStream<String,String> kStream(StreamsBuilder streamsBuilder){
        //接收消息
        KStream<String,String> stream = streamsBuilder.stream(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC);
        //聚合流式处理
        stream.map((key,value)->{
            UpdateArticleMess mess = JSON.parseObject(value, UpdateArticleMess.class);
            //重置消息的key:1234343434   和  value: likes:1
            return new KeyValue<>(mess.getArticleId().toString(),mess.getType().name()+":"+mess.getAdd());
        })
                //按照文章id进行聚合
                .groupBy((key,value)->key)
                //时间窗口
                .windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
                /**
                 * 自行的完成聚合的计算
                 */
                .aggregate(new Initializer<String>() {
                    /**
                     * 初始方法,返回值是消息的value
                     * @return
                     */
                    @Override
                    public String apply() {
                        return "COLLECTION:0,COMMENT:0,LIKES:0,VIEWS:0";
                    }
                    /**
                     * 真正的聚合操作,返回值是消息的value
                     */
                }, new Aggregator<String, String, String>() {
                    @Override
                    public String apply(String key, String value, String aggValue) {
                        if(StringUtils.isBlank(value)){
                            return aggValue;
                        }
                        String[] aggAry = aggValue.split(",");
                        int col = 0,com=0,lik=0,vie=0;
                        for (String agg : aggAry) {
                            String[] split = agg.split(":");
                            /**
                             * 获得初始值,也是时间窗口内计算之后的值
                             */
                            switch (UpdateArticleMess.UpdateArticleType.valueOf(split[0])){
                                case COLLECTION:
                                    col = Integer.parseInt(split[1]);
                                    break;
                                case COMMENT:
                                    com = Integer.parseInt(split[1]);
                                    break;
                                case LIKES:
                                    lik = Integer.parseInt(split[1]);
                                    break;
                                case VIEWS:
                                    vie = Integer.parseInt(split[1]);
                                    break;
                            }
                        }
                        /**
                         * 累加操作
                         */
                        String[] valAry = value.split(":");
                        switch (UpdateArticleMess.UpdateArticleType.valueOf(valAry[0])){
                            case COLLECTION:
                                col += Integer.parseInt(valAry[1]);
                                break;
                            case COMMENT:
                                com += Integer.parseInt(valAry[1]);
                                break;
                            case LIKES:
                                lik += Integer.parseInt(valAry[1]);
                                break;
                            case VIEWS:
                                vie += Integer.parseInt(valAry[1]);
                                break;
                        }

                        String formatStr = String.format("COLLECTION:%d,COMMENT:%d,LIKES:%d,VIEWS:%d", col, com, lik, vie);
                        System.out.println("文章的id:"+key);
                        System.out.println("当前时间窗口内的消息处理结果:"+formatStr);
                        return formatStr;
                    }
                }, Materialized.as("hot-atricle-stream-count-001"))
                .toStream()
                .map((key,value)->{
                    return new KeyValue<>(key.key().toString(),formatObj(key.key().toString(),value));
                })
                //发送消息
                .to(HotArticleConstants.HOT_ARTICLE_INCR_HANDLE_TOPIC);

        return stream;


    }

    /**
     * 格式化消息的value数据
     * @param articleId
     * @param value
     * @return
     */
    public String formatObj(String articleId,String value){
        ArticleVisitStreamMess mess = new ArticleVisitStreamMess();
        mess.setArticleId(Long.valueOf(articleId));
        //COLLECTION:0,COMMENT:0,LIKES:0,VIEWS:0
        String[] valAry = value.split(",");
        for (String val : valAry) {
            String[] split = val.split(":");
            switch (UpdateArticleMess.UpdateArticleType.valueOf(split[0])){
                case COLLECTION:
                    mess.setCollect(Integer.parseInt(split[1]));
                    break;
                case COMMENT:
                    mess.setComment(Integer.parseInt(split[1]));
                    break;
                case LIKES:
                    mess.setLike(Integer.parseInt(split[1]));
                    break;
                case VIEWS:
                    mess.setView(Integer.parseInt(split[1]));
                    break;
            }
        }
        log.info("聚合消息处理之后的结果为:{}",JSON.toJSONString(mess));
        return JSON.toJSONString(mess);

    }
}

重新计算文章的分值,更新到数据库和缓存中

①在ApArticleService添加方法,用于更新数据库中的文章分值

/**
     * 更新文章的分值  同时更新缓存中的热点文章数据
     * @param mess
     */
public void updateScore(ArticleVisitStreamMess mess);

实现类方法

/**
     * 更新文章的分值  同时更新缓存中的热点文章数据
     * @param mess
     */
@Override
public void updateScore(ArticleVisitStreamMess mess) {
    //1.更新文章的阅读、点赞、收藏、评论的数量
    ApArticle apArticle = updateArticle(mess);
    //2.计算文章的分值
    Integer score = computeScore(apArticle);
    score = score * 3;

    //3.替换当前文章对应频道的热点数据
    replaceDataToRedis(apArticle, score, ArticleConstants.HOT_ARTICLE_FIRST_PAGE + apArticle.getChannelId());

    //4.替换推荐对应的热点数据
    replaceDataToRedis(apArticle, score, ArticleConstants.HOT_ARTICLE_FIRST_PAGE + ArticleConstants.DEFAULT_TAG);

}

/**
     * 替换数据并且存入到redis
     * @param apArticle
     * @param score
     * @param s
     */
private void replaceDataToRedis(ApArticle apArticle, Integer score, String s) {
    String articleListStr = cacheService.get(s);
    if (StringUtils.isNotBlank(articleListStr)) {
        List<HotArticleVo> hotArticleVoList = JSON.parseArray(articleListStr, HotArticleVo.class);

        boolean flag = true;

        //如果缓存中存在该文章,只更新分值
        for (HotArticleVo hotArticleVo : hotArticleVoList) {
            if (hotArticleVo.getId().equals(apArticle.getId())) {
                hotArticleVo.setScore(score);
                flag = false;
                break;
            }
        }

        //如果缓存中不存在,查询缓存中分值最小的一条数据,进行分值的比较,如果当前文章的分值大于缓存中的数据,就替换
        if (flag) {
            if (hotArticleVoList.size() >= 30) {
                hotArticleVoList = hotArticleVoList.stream().sorted(Comparator.comparing(HotArticleVo::getScore).reversed()).collect(Collectors.toList());
                HotArticleVo lastHot = hotArticleVoList.get(hotArticleVoList.size() - 1);
                if (lastHot.getScore() < score) {
                    hotArticleVoList.remove(lastHot);
                    HotArticleVo hot = new HotArticleVo();
                    BeanUtils.copyProperties(apArticle, hot);
                    hot.setScore(score);
                    hotArticleVoList.add(hot);
                }


            } else {
                HotArticleVo hot = new HotArticleVo();
                BeanUtils.copyProperties(apArticle, hot);
                hot.setScore(score);
                hotArticleVoList.add(hot);
            }
        }
        //缓存到redis
        hotArticleVoList = hotArticleVoList.stream().sorted(Comparator.comparing(HotArticleVo::getScore).reversed()).collect(Collectors.toList());
        cacheService.set(s, JSON.toJSONString(hotArticleVoList));

    }
}

/**
     * 更新文章行为数量
     * @param mess
     */
private ApArticle updateArticle(ArticleVisitStreamMess mess) {
    ApArticle apArticle = getById(mess.getArticleId());
    apArticle.setCollection(apArticle.getCollection()==null?0:apArticle.getCollection()+mess.getCollect());
    apArticle.setComment(apArticle.getComment()==null?0:apArticle.getComment()+mess.getComment());
    apArticle.setLikes(apArticle.getLikes()==null?0:apArticle.getLikes()+mess.getLike());
    apArticle.setViews(apArticle.getViews()==null?0:apArticle.getViews()+mess.getView());
    updateById(apArticle);
    return apArticle;

}

/**
     * 计算文章的具体分值
     * @param apArticle
     * @return
     */
private Integer computeScore(ApArticle apArticle) {
    Integer score = 0;
    if(apArticle.getLikes() != null){
        score += apArticle.getLikes() * ArticleConstants.HOT_ARTICLE_LIKE_WEIGHT;
    }
    if(apArticle.getViews() != null){
        score += apArticle.getViews();
    }
    if(apArticle.getComment() != null){
        score += apArticle.getComment() * ArticleConstants.HOT_ARTICLE_COMMENT_WEIGHT;
    }
    if(apArticle.getCollection() != null){
        score += apArticle.getCollection() * ArticleConstants.HOT_ARTICLE_COLLECTION_WEIGHT;
    }

    return score;
}

 ②定义监听,接收聚合之后的数据,文章的分值重新进行计算

package com.heima.article.listener;

import com.alibaba.fastjson.JSON;
import com.heima.article.service.ApArticleService;
import com.heima.common.constants.HotArticleConstants;
import com.heima.model.mess.ArticleVisitStreamMess;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

@Component
@Slf4j
public class ArticleIncrHandleListener {

    @Autowired
    private ApArticleService apArticleService;

    @KafkaListener(topics = HotArticleConstants.HOT_ARTICLE_INCR_HANDLE_TOPIC)
    public void onMessage(String mess){
        if(StringUtils.isNotBlank(mess)){
            ArticleVisitStreamMess articleVisitStreamMess = JSON.parseObject(mess, ArticleVisitStreamMess.class);
            apArticleService.updateScore(articleVisitStreamMess);

        }
    }
}

下面是day12

 持续集成

软件开发模式

 

Jenkins

 艹,好麻烦,不做了。以后用到再去看吧。不搞了。 还特么要用百度网盘下一个10g的镜像....

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1410487.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

仿真机器人-深度学习CV和激光雷达感知(项目2)day04【简单例程】

文章目录 前言简单例程运行小海龟仿真启动节点查看计算图发布 Topic调用 Serviece 用 Python 发布和接收 Topic创建工作空间创建功能包&#xff0c;编译编写 Topic Publisher 节点编写 Topic Subscriber 节点运行节点 自定义消息类型用 Python 注册和调用 Serviece新建功能包在…

更高效的大模型调优方法,华盛顿大学推出“代理调优”

随着ChatGPT等生成式AI产品朝着多模态发展&#xff0c;基础模型的参数越来越高&#xff0c;想进行权重调优需要耗费大量时间和AI算力。 为了提升模型的调优效率&#xff0c;华盛顿大学和艾伦AI实验室的研究人员推出了全新方法——Proxy Tuning&#xff08;代理调优&#xff09…

YOLOv7全网独家首发:Powerful-IoU更好、更快的收敛IoU,效果秒杀CIoU、GIoU等 | 2024年最新IoU

💡💡💡本文独家改进:Powerful-IoU更好、更快的收敛IoU,是一种结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数的损失函数 💡💡💡MS COCO和PASCAL VOC数据集实现涨点 收录 YOLOv7原创自研 https://blog.csdn.net/m0_63774211/category_12511937.htm…

arcgis 线要素shp数据处理

回顾 上篇写了arcgis 点shp数据处理之少数点和批量点坐标如何生成点要素&#xff0c;这个可能在做一些设计及查询中需要做的第一步。那么今天将对如何点集转线、线要素编辑数据处理做一记录。 一、工具 arcToolbox工具箱、编辑器 二、操作方法 1.点集转线 还是用上篇处理成…

解决软件找不到msvcp120.dll的五种方法,快速修复msvcp120.dll文件丢失方法

msvcp120.dll 是一个动态链接库文件&#xff0c;它是 Microsoft Visual C 2013 的一个部分&#xff0c;具体来说是 Microsoft Visual C Redistributable Package 的一部分。这个文件包含了微软的 C 运行时库&#xff08;CRT&#xff09;&#xff0c;特别是 C 标准库的部分&…

一、Lamdba 表达式与函数式接口(最终版)

一、Lamdba 表达式与函数式接口 1.1 Lamdba 表达式与函数式接口 1.1.1 Lambda 表达式概述 Lambda 表达式是 Java 8 引入的一个新特性Lambda 表达式可以被视为匿名函数允许在需要函数的地方以更简洁的方法定义功能Lambda 表达式可以完成简洁的函数定义Stream API 中大量使用了…

目标检测数据集 - MS COCO

文章目录 1. 数据集介绍2. 使用pycocotools读取数据3. 验证mAP 论文&#xff1a;Microsoft COCO: Common Objects in Context 网址&#xff1a;https://arxiv.org/abs/1405.0312 官网&#xff1a;https://cocodataset.org/ 1. 数据集介绍 MS COCO是一个非常大型&#xff0c;且…

HAL STM32+EC11编码器实现增减调节及单击、双击、长按功能

HAL STM32EC11编码器实现增减调节及单击、双击、长按功能 &#x1f4fa;实现效果演示&#xff1a; &#x1f4d8;内容提要 &#x1f4dd;本文主要实现&#xff0c;通过STM32 HAL库开发&#xff0c;实现的EC11编码器功能&#xff0c;按键结合状态机思想实现的拓展单击、双击、…

docker-compose搭建redis集群

这里用docker-compose在一台机器搭建三主三从&#xff0c;生产环境肯定是在多台机器搭建&#xff0c;否则一旦这台宿主机挂了&#xff0c;redis集群全挂了&#xff0c;依然是单点故障。同时&#xff0c;受机器性能极限影响&#xff0c;其并发也上不去&#xff0c;算不上高并发。…

用二维码进行灭火器检查,消防巡检更轻松

传统的消防设备管理往往使用纸质巡检表&#xff0c;无法保证巡检人员是否前往现场&#xff0c;可能会存在漏检的情况&#xff0c;而且纸质表格不便于管理&#xff0c;容易造成数据丢失。 为了避免上述问题&#xff0c;可以在草料上搭建消防设备管理二维码系统。巡视人员扫码就…

docker 安装python3.8环境镜像并导入局域网

一、安装docker yum -y install docker docker version #显示 Docker 版本信息 可以看到已经下载下来了 拉取镜像python3镜像 二、安装docker 中python3环境 运行本地镜像&#xff0c;并进入镜像环境 docker run -itd python-38 /bin/bash docker run -itd pyth…

模型之地图染色与时间表制定

地图染色与时间表制定 “优化问题中的颜色选择和课程安排&#xff1a;最小颜色数和时间冲突的解决” 设想你正在绘制一幅地图&#xff0c;地图上分成了若干区域&#xff0c;你希望为这些区域选取颜色。你可能想选用尽可能少的颜色&#xff0c;但同时还希望避免任意两块相邻区…

网工每日一练(1月25日)

【说明】 某仓储企业网络拓扑结构如图1-1所示&#xff0c;该企业占地500亩。有五层办公楼1栋&#xff0c;大型仓库10栋。每栋仓库内、外部配置视频监控16台&#xff0c;共计安装视频监控160台&#xff0c;SwitchA、服务器、防火墙、管理机、RouterA等设备部署在企业办公楼一层的…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-后台管理主页面实现

锋哥原创的SpringbootLayui python222网站实战&#xff1a; python222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火…

书生·浦语大模型实战营-学习笔记6

目录 OpenCompass大模型测评1. 关于评测1.1 为什么要评测&#xff1f;1.2 需要评测什么&#xff1f;1.3 如何评测&#xff1f;1.3.1 客观评测1.3.2 主观评测1.3.3 提示词工程评测 2. 介绍OpenCompass工具3. 实战演示 OpenCompass大模型测评 1. 关于评测 1.1 为什么要评测&#…

Java实现校园疫情防控管理系统 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 学生2.2 老师2.3 学校管理部门 三、系统展示四、核心代码4.1 新增健康情况上报4.2 查询健康咨询4.3 新增离返校申请4.4 查询防疫物资4.5 查询防控宣传数据 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBoot…

如何让windows更好的支持linux的开发

shigen坚持更新文章的博客写手&#xff0c;擅长Java、python、vue、shell等编程语言和各种应用程序、脚本的开发。记录成长&#xff0c;分享认知&#xff0c;留住感动。 shigen的日常开发用到的就是macwindows&#xff0c;在我的mac里也安装了windows的虚拟机。让我比较烦的是l…

低成本扫码点餐:1000元全包

在数字化时代&#xff0c;扫码点餐已经成为餐饮行业的标配。然而&#xff0c;对于许多小规模或初创的餐饮企业来说&#xff0c;开发一套完整的扫码点餐系统是一项成本高昂的任务。今天&#xff0c;我们将向您介绍一个低成本、高效的方法&#xff0c;让您用1000块钱轻松搞定一套…

基于51单片机智能电子秤

实物显示效果&#xff1a; https://www.bilibili.com/video/BV1Wb4y1A7Aw/?vd_source6ff7cd03af95cd504b60511ef9373a1d 功能介绍&#xff1a; &#xff08;1&#xff09;用键盘设计单价&#xff1b; &#xff08;2&#xff09;称重后同时显示该物品的重量、单价和总额&…

除了Docusaurus,还有哪些工具可以搭建知识库?(非开源的也可以)

在今天的数字化时代&#xff0c;为了更好地管理和共享企业内部的知识&#xff0c;许多公司都开始寻找适合自己的知识库搭建工具。Docusaurus是一个比较有知名度的开源知识库工具&#xff0c;但除了Docusaurus之外&#xff0c;还有其他非开源的工具同样可以搭建出高效的知识库。…