目录
一、链队列
1、链栈的定义:
2、链栈的优缺点:
二、链队列的基本操作算法(C语言)
1、宏定义
2、创建结构体
3、链栈的初始化
4、链队列的入队
5、链队列的出队
6、取链队列的对头元素
7、链队列的销毁
8、链队列的清空
9、判断链队列是否为空
10、求队列长度
11、遍历队列元素
三、链队列的基本操作完整代码(C语言)
四、运行结果
一、链队列
1、链栈的定义:
链队列是一种线性数据结构,采用链表来实现队列的操作。链队列具有队头指针和队尾指针,用于指示队列元素所在的位置。链队列只允许在队尾插入元素,在队头删除元素,符合先进先出(First In First Out,FIFO)的原则。
2、链栈的优缺点:
链队列的优点:
- 动态分配空间:链队列使用链表实现,可动态分配和释放空间。因此,不需要预先分配大量存储空间,可以根据实际需求进行空间分配。
- 无需移动元素:相比普通队列,链队列在删除元素时无需移动大量元素,只需修改指针即可。这使得链队列在处理大规模数据时具有更高的效率。
- 适合处理用户排队等待的情况:链队列适用于处理用户排队等待的情况,例如银行排队、网络请求等。通过链队列,可以快速地插入新用户和删除已处理的用户。
链队列的缺点:
- 需要额外的存储空间:为了实现链表结构,链队列需要额外的存储空间来维护指针和节点。这会增加存储空间的消耗。
- 插入和删除操作可能引起内存分配和释放:在链队列中插入和删除元素时,可能需要动态分配和释放内存。这会增加操作的时间复杂度,并可能引起内存碎片化问题。
- 无法充分利用连续空间的优势:链表结构使得链队列无法像数组一样充分利用连续空间的优势,这会影响空间利用率和访问速度。
二、链队列的基本操作算法(C语言)
1、宏定义
#define OK 1
#define ERROR 0
#define OVERFLOW -1
#define MAXSIZE 100
typedef int QElemtype;
typedef int Status;
2、创建结构体
//创建结构体
typedef struct QNode {
QElemtype data;
struct QNode *next;
} QNode, *QueuePtr;
typedef struct {
QueuePtr front;
QueuePtr rear;
} LinkQueue;
3、链栈的初始化
//链队列的初始化
Status InitQueue(LinkQueue &Q) {
Q.front = Q.rear = (QueuePtr) malloc(sizeof(QNode));
if (!Q.front) {
exit(OVERFLOW);
}
Q.front->next = NULL;
return OK;
}
4、链队列的入队
//链队列的入队
Status EnQueue(LinkQueue &Q, QElemtype e) {
QueuePtr p = (QueuePtr) malloc(sizeof(QNode));
if (!p) {
exit(OVERFLOW);
}
p->data = e;
p->next = NULL;
Q.rear->next = p;
Q.rear = p;
return OK;
}
5、链队列的出队
//链队列的出队
Status DeQueue(LinkQueue &Q, QElemtype &e) {
if (Q.front == Q.rear) {
return ERROR;
}
QueuePtr p = Q.front->next;
e = p->data;
Q.front->next = p->next;
if (Q.rear == p) {
Q.rear = Q.front;
}
delete p;
return OK;
}
6、取链队列的对头元素
//取链列的对头元素
Status GetQueueHead(LinkQueue &Q, QElemtype &e) {
if (Q.front == Q.rear) {
return ERROR;
}
e = Q.front->next->data;
return OK;
}
7、链队列的销毁
//队列的销毁
Status DestoryQueue(LinkQueue &Q) {
while (Q.front) {
Q.rear = Q.front->next;
delete (Q.front);
Q.front = Q.rear;
}
// printf("销毁成功!");
return OK;
}
8、链队列的清空
//清空
Status ClearQueue(LinkQueue &Q) {
Q.rear = Q.front->next;
while (Q.front->next) {
Q.rear = Q.rear->next;
delete (Q.front->next);
Q.front->next = Q.rear;
}
Q.rear = Q.front;
// printf("清空成功!");
return OK;
}
9、判断链队列是否为空
//判断是否为空
Status QueueEmpty(LinkQueue &Q) {
if (Q.front == Q.rear) {
// printf("队列为空!\n");
return true;
} else {
return false;
}
// printf("该队列不为空!");
}
10、求队列长度
//求队列长度
Status QueueLength(LinkQueue Q) {
int i = 0;
while (Q.front != Q.rear) {
i++;
Q.front = Q.front->next;
}
// printf("该队列长度为:%d", i);
return i;
}
11、遍历队列元素
//遍历队列
Status QueueTraverse(LinkQueue Q) {
QNode *p;
if (Q.front == Q.rear) {
return ERROR;
}
p = Q.front->next;//存储头元素
printf("从队头依次读出该队列中的元素值为: ");
while (p != NULL) {
printf("%d ", p->data);
p = p->next;
}
printf("\n");
return OK;
}
三、链队列的基本操作完整代码(C语言)
#include<stdio.h>
#include<stdlib.h>
#define OK 1
#define ERROR 0
#define OVERFLOW -1
#define MAXSIZE 100
typedef int QElemtype;
typedef int Status;
//创建结构体
typedef struct QNode {
QElemtype data;
struct QNode *next;
} QNode, *QueuePtr;
typedef struct {
QueuePtr front;
QueuePtr rear;
} LinkQueue;
//链队列的初始化
Status InitQueue(LinkQueue &Q) {
Q.front = Q.rear = (QueuePtr) malloc(sizeof(QNode));
if (!Q.front) {
exit(OVERFLOW);
}
Q.front->next = NULL;
return OK;
}
//链队列的入队
Status EnQueue(LinkQueue &Q, QElemtype e) {
QueuePtr p = (QueuePtr) malloc(sizeof(QNode));
if (!p) {
exit(OVERFLOW);
}
p->data = e;
p->next = NULL;
Q.rear->next = p;
Q.rear = p;
return OK;
}
//链队列的出队
Status DeQueue(LinkQueue &Q, QElemtype &e) {
if (Q.front == Q.rear) {
return ERROR;
}
QueuePtr p = Q.front->next;
e = p->data;
Q.front->next = p->next;
if (Q.rear == p) {
Q.rear = Q.front;
}
delete p;
return OK;
}
//取链列的对头元素
Status GetQueueHead(LinkQueue &Q, QElemtype &e) {
if (Q.front == Q.rear) {
return ERROR;
}
e = Q.front->next->data;
return OK;
}
//队列的销毁
Status DestoryQueue(LinkQueue &Q) {
while (Q.front) {
Q.rear = Q.front->next;
delete (Q.front);
Q.front = Q.rear;
}
// printf("销毁成功!");
return OK;
}
//清空
Status ClearQueue(LinkQueue &Q) {
Q.rear = Q.front->next;
while (Q.front->next) {
Q.rear = Q.rear->next;
delete (Q.front->next);
Q.front->next = Q.rear;
}
Q.rear = Q.front;
// printf("清空成功!");
return OK;
}
//判断是否为空
Status QueueEmpty(LinkQueue &Q) {
if (Q.front == Q.rear) {
// printf("队列为空!\n");
return true;
} else {
return false;
}
// printf("该队列不为空!");
}
//求队列长度
Status QueueLength(LinkQueue Q) {
int i = 0;
while (Q.front != Q.rear) {
i++;
Q.front = Q.front->next;
}
// printf("该队列长度为:%d", i);
return i;
}
//遍历队列
Status QueueTraverse(LinkQueue Q) {
QNode *p;
if (Q.front == Q.rear) {
return ERROR;
}
p = Q.front->next;//存储头元素
printf("从队头依次读出该队列中的元素值为: ");
while (p != NULL) {
printf("%d ", p->data);
p = p->next;
}
printf("\n");
return OK;
}
//功能菜单列表
void show_help() {
printf("******* 功能菜单列表 *******\n");
printf("1----入队------------------\n");
printf("2----求链队列长度----------\n");
printf("3----出队------------------\n");
printf("4----取队头元素-------------\n");
printf("5----清空循环队列-----------\n");
printf("6----销毁循环队列-----------\n");
printf("7----判断循环队列是否为空-----\n");
printf("8----批量插入元素------------\n");
printf("9----显示队列元素------------\n");
printf("10----退出------------------\n\n");
}
//主函数
int main() {
LinkQueue LQ;
Status reIn = InitQueue(LQ);
if (reIn == OK) {
printf("链队列初始时成功 \n");
} else {
printf("链队列初始时失败 \n");
}
while (1) {
//功能菜单列表
show_help();
int flag;
printf("请输入所需的功能编号:\n");
scanf("%d", &flag);
switch (flag) {
case 1: {//入队
Status EnQueueindex;
printf("请输入插入元素(请在英文状态下输入例如:1): \n");
scanf("%d", &EnQueueindex);
Status rEnQueue = EnQueue(LQ, EnQueueindex);
if (rEnQueue == OK) {
printf("向链队列入队%d成功!\n", EnQueueindex);
} else {
printf("向链队列入队失败!\n");
}
}
break;
case 2: {//求链队列的长度
int length = QueueLength(LQ);
printf("链队列的长度为:%d。 \n\n", length);
}
break;
case 3: {//出队
QElemtype DeElem;
Status DeEn = DeQueue(LQ, DeElem);
if (DeEn == OK) {
printf("从链队列中出队成功,出队的元素为 %d! \n", DeElem);
} else {
printf("从链队列中出队失败!\n");
}
}
break;
case 4: {//求队头元素
QElemtype getEl;
Status reGet = GetQueueHead(LQ, getEl);
if (reGet == OK) {
printf("从链队列中取对头元素成功,队头元素为:%d! \n", getEl);
} else {
printf("从链队列中取对头元素成功 \n");
}
}
break;
case 5: { //清空
Status rClearStack = ClearQueue(LQ);
if (rClearStack == OK) {
printf("链队列清空成功!\n");
} else {
printf("链队列清空失败!\n");
}
}
break;
case 6: {//销毁
Status rDestroyStack = DestoryQueue(LQ);
if (rDestroyStack == OK) {
printf("链队列销毁成功!\n");
} else {
printf("链队列销毁失败!\n");
}
}
break;
case 7: {///判空
Status ClearStatus = QueueEmpty(LQ);
if (ClearStatus == true) {
printf("链队列为空!\n\n");
} else {
printf("链队列不为空!\n\n");
}
}
break;
case 8: {//批量插入
int on;
printf("请输入想要插入的元素个数:\n");
scanf("%d", &on);
QElemtype array[on];
for (int i = 1; i <= on; i++) {
printf("向链队列第%d个位置插入元素为:", i);
scanf("%d", &array[i]);
}
for (int i = 1; i <= on; i++) {
Status InsertStatus = EnQueue(LQ, array[i]);
if (InsertStatus == OK) {
printf("向链队列第%d个位置插入元素%d成功!\n", i, array[i]);
} else {
printf("向链队列第%d个位置插入元素%d失败!\n", i, array[i]);
}
}
}
break;
case 9: {//输出链表元素
QueueTraverse(LQ);
// printf("\n");
}
break;
case 10: {//退出程序
return 0;
}
break;
default: {
printf("输入错误,无此功能,请检查输入:\n\n");
}
}
}
return 1;
}