PyTorch深度学习实战(32)——DCGAN详解与实现

news2024/12/24 21:57:51

PyTorch深度学习实战(32)——DCGAN详解与实现

    • 0. 前言
    • 1. 模型与数据集分析
      • 1.1 模型分析
      • 1.2 数据集介绍
    • 2. 构建 DCGAN 生成人脸图像
    • 小结
    • 系列链接

0. 前言

DCGAN (Deep Convolutional Generative Adversarial Networks) 是基于生成对抗网络 (Convolutional Generative Adversarial Networks, GAN) 的深度学习模型,相比传统的 GAN 模型,DCGAN 通过引入卷积神经网络 (Convolutional Neural Networks, CNN) 架构来提升生成网络和判别网络的性能。DCGAN 中的生成网络和判别网络都是使用卷积层和反卷积层构建的深度神经网络。生成网络接收一个随机噪声向量作为输入,并通过反卷积层将其逐渐转化为与训练数据相似的输出图像,判别网络则是一个用于分类真实和生成图像的卷积神经网络。

1. 模型与数据集分析

1.1 模型分析

我们已经学习了 GAN 的基本原理并并使用 PyTorch 实现了 GAN 模型用于生成 MNIST 手写数字图像。同时,我们已经知道,与普通神经网络相比,卷积神经网络 (Convolutional Neural Networks, CNN) 架构能够更好地学习图像中的特征。在本节中,我们将学习使用深度卷积生成对抗网络生成图像,在模型中使用卷积和池化操作替换全连接层。
首先,介绍如何使用随机噪声( 100 维向量)生成图像,将噪声形状转换为 batch size x 100 x 1 x 1,其中 batch size 表示批大小,由于在 DCGAN 使用 CNN,因此需要添加额外的通道信息,即 batch size x channel x height x width 的形式,channel 表示通道数,heightwidth 分别表示高度和宽度。
接下来,利用 ConvTranspose2d 将生成的噪声向量转换为图像,ConvTranspose2d 与卷积操作相反,将输入的小特征图通过预定义的核大小、步幅和填充上上采样到较大的尺寸。利用上采样逐渐将向量形状从 batch size x 100 x 1 x 1 转换为 batch size x 3 x 64 x 64,即将 100 维的随机噪声向量转换成一张 64 x 64 的图像。

1.2 数据集介绍

为了训练对抗生成网络,我们需要了解本节所用的数据集,数据集取自 Celeb A,可以自行构建数据集,也可以下载本文所用数据集,下载地址:https://pan.baidu.com/s/1dvDCBLSGwblg57p9RDBEJQ,提取码:y9fiCelebA 是一个大规模的人脸属性数据集,其中包含超过 20 万张名人图像,每张图像有 40 个属性注释。CelebA 数据集的图像来源于互联网上的名人照片,包括电影、音乐和体育界等各个领域。这些图像具有多样的姿势、表情、背景和装扮,涵盖了各种真实世界的场景。

2. 构建 DCGAN 生成人脸图像

接下来,我们使用 PyTorch 构建 DCGAN 模型生成人脸图像。

(1) 下载并获取人脸图像,示例图像如下所示:

示例图像
(2) 导入相关库:

from torchvision import transforms
import torchvision.utils as vutils
import cv2, numpy as np
import torch
import os
from glob import glob
from PIL import Image
from torch import nn, optim
from torch.utils.data import DataLoader, Dataset
from matplotlib import pyplot as plt
device = "cuda" if torch.cuda.is_available() else "cpu"

(3) 定义数据集和数据加载器。

裁剪图像,只保留面部区域并丢弃图像中的其他部分。首先,使用级联滤波器识别图像中的人脸:

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

OpenCV 提供了 4 个级联分类器用于人脸检测,可以从 OpenCV 官方下载这些级联分类器文件:

  • haarcascade_frontalface_alt.xml (FA1)
  • haarcascade_frontalface_alt2.xml (FA2)
  • haarcascade_frontalface_alt_tree.xml (FAT)
  • haarcascade_frontalface_default.xml (FD)

可以使用不同的数据集评估这些级联分类器的性能,总的来说这些分类器具有相似的准确率。

创建一个新文件夹,并将所有裁剪后的人脸图像转储到新文件夹中:

if not os.path.exists('cropped_faces'):
    os.mkdir('cropped_faces')

images = glob('male_female_face_images/females/*.jpg')+glob('male_female_face_images/males/*.jpg')
for i in range(len(images)):
    img = cv2.imread(images[i],1)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x,y,w,h) in faces:
        img2 = img[y:(y+h),x:(x+w),:]
    cv2.imwrite('cropped_faces/'+str(i)+'.jpg', img2)

裁剪后的面部示例图像如下:

面部裁剪图像
定义要对每个图像执行的转换:

transform=transforms.Compose([
                               transforms.Resize(64),
                               transforms.CenterCrop(64),
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

定义 Faces 数据集类:

class Faces(Dataset):
    def __init__(self, folder):
        super().__init__()
        self.folder = folder
        self.images = sorted(glob(folder))
    def __len__(self):
        return len(self.images)
    def __getitem__(self, ix):
        image_path = self.images[ix]
        image = Image.open(image_path)
        image = transform(image)
        return image

创建数据集对象 ds

ds = Faces(folder='cropped_faces/*.jpg')

定义数据加载器类:

dataloader = DataLoader(ds, batch_size=64, shuffle=True, num_workers=8)

(4) 定义权重初始化函数,使权重的分布较小:

def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)

(5) 定义判别网络模型类 Discriminator,接收形状为 batch size x 3 x 64 x 64 的图像,并预测输入图像是真实图像还是生成图像:

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3,64,4,2,1,bias=False),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Conv2d(64,64*2,4,2,1,bias=False),
            nn.BatchNorm2d(64*2),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Conv2d(64*2,64*4,4,2,1,bias=False),
            nn.BatchNorm2d(64*4),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Conv2d(64*4,64*8,4,2,1,bias=False),
            nn.BatchNorm2d(64*8),
            nn.LeakyReLU(0.2,inplace=True),
            nn.Conv2d(64*8,1,4,1,0,bias=False),
            nn.Sigmoid()
        )
        self.apply(weights_init)
    def forward(self, input):
        return self.model(input)

打印模型的摘要信息:

from torchsummary import summary
discriminator = Discriminator().to(device)
print(summary(discriminator, (3,64,64)))

模型摘要输出结果如下所示:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 32, 32]           3,072
         LeakyReLU-2           [-1, 64, 32, 32]               0
            Conv2d-3          [-1, 128, 16, 16]         131,072
       BatchNorm2d-4          [-1, 128, 16, 16]             256
         LeakyReLU-5          [-1, 128, 16, 16]               0
            Conv2d-6            [-1, 256, 8, 8]         524,288
       BatchNorm2d-7            [-1, 256, 8, 8]             512
         LeakyReLU-8            [-1, 256, 8, 8]               0
            Conv2d-9            [-1, 512, 4, 4]       2,097,152
      BatchNorm2d-10            [-1, 512, 4, 4]           1,024
        LeakyReLU-11            [-1, 512, 4, 4]               0
           Conv2d-12              [-1, 1, 1, 1]           8,192
          Sigmoid-13              [-1, 1, 1, 1]               0
================================================================
Total params: 2,765,568
Trainable params: 2,765,568
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.05
Forward/backward pass size (MB): 2.31
Params size (MB): 10.55
Estimated Total Size (MB): 12.91
----------------------------------------------------------------

(6) 定义生成网络模型类,使用形状为 batch size x 100 x 1 x 1 的输入生成图像:

class Generator(nn.Module):
    def __init__(self):
        super(Generator,self).__init__()
        self.model = nn.Sequential(
            nn.ConvTranspose2d(100,64*8,4,1,0,bias=False,),
            nn.BatchNorm2d(64*8),
            nn.ReLU(True),
            nn.ConvTranspose2d(64*8,64*4,4,2,1,bias=False),
            nn.BatchNorm2d(64*4),
            nn.ReLU(True),
            nn.ConvTranspose2d( 64*4,64*2,4,2,1,bias=False),
            nn.BatchNorm2d(64*2),
            nn.ReLU(True),
            nn.ConvTranspose2d( 64*2,64,4,2,1,bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.ConvTranspose2d( 64,3,4,2,1,bias=False),
            nn.Tanh()
        )
        self.apply(weights_init)
    def forward(self,input):
        return self.model(input)

打印模型的摘要信息:

generator = Generator().to(device)
print(summary(generator, (100,1,1)))

代码输出结果如下所示:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
   ConvTranspose2d-1            [-1, 512, 4, 4]         819,200
       BatchNorm2d-2            [-1, 512, 4, 4]           1,024
              ReLU-3            [-1, 512, 4, 4]               0
   ConvTranspose2d-4            [-1, 256, 8, 8]       2,097,152
       BatchNorm2d-5            [-1, 256, 8, 8]             512
              ReLU-6            [-1, 256, 8, 8]               0
   ConvTranspose2d-7          [-1, 128, 16, 16]         524,288
       BatchNorm2d-8          [-1, 128, 16, 16]             256
              ReLU-9          [-1, 128, 16, 16]               0
  ConvTranspose2d-10           [-1, 64, 32, 32]         131,072
      BatchNorm2d-11           [-1, 64, 32, 32]             128
             ReLU-12           [-1, 64, 32, 32]               0
  ConvTranspose2d-13            [-1, 3, 64, 64]           3,072
             Tanh-14            [-1, 3, 64, 64]               0
================================================================
Total params: 3,576,704
Trainable params: 3,576,704
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 3.00
Params size (MB): 13.64
Estimated Total Size (MB): 16.64
----------------------------------------------------------------

(7) 定义训练生成网络 (generator_train_step) 和判别网络 (discriminator_train_step) 的函数:

def discriminator_train_step(real_data, fake_data, loss, d_optimizer):
    d_optimizer.zero_grad()
    prediction_real = discriminator(real_data)
    error_real = loss(prediction_real.squeeze(), torch.ones(len(real_data)).to(device))
    error_real.backward()
    prediction_fake = discriminator(fake_data)
    error_fake = loss(prediction_fake.squeeze(), torch.zeros(len(fake_data)).to(device))
    error_fake.backward()
    d_optimizer.step()
    return error_real + error_fake

def generator_train_step(real_data, fake_data, loss, g_optimizer):
    g_optimizer.zero_grad()
    prediction = discriminator(fake_data)
    error = loss(prediction.squeeze(), torch.ones(len(real_data)).to(device))
    error.backward()
    g_optimizer.step()
    return error

在以上代码中,在判别网络预测结果上执行 .squeeze 操作,因为模型的输出形状为 batch size x 1 x 1 x 1,而预测结果需要与形状为 batch size x 1 的张量进行比较。

(8) 创建生成网络和判别网络模型对象、优化器以及损失函数:

discriminator = Discriminator().to(device)
generator = Generator().to(device)
loss = nn.BCELoss()
d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))

(9) 训练模型。

加载真实数据 (real_data) 并通过生成网络生成图像 (fake_data):

num_epochs = 100
d_loss_epoch = []
g_loss_epoch = []
for epoch in range(num_epochs):
    N = len(dataloader)
    d_loss_items = []
    g_loss_items = []
    for i, images in enumerate(dataloader):
        real_data = images.to(device)
        fake_data = generator(torch.randn(len(real_data), 100, 1, 1).to(device)).to(device)
        fake_data = fake_data.detach()

原始 GANDCGAN 的主要区别在于,在 DCGAN 模型中,由于使用了 CNN,因此不必展平 real_data

使用 discriminator_train_step 函数训练判别网络:

        d_loss = discriminator_train_step(real_data, fake_data, loss, d_optimizer)

利用噪声数据 (torch.randn(len(real_data))) 生成新图像 (fake_data) 并使用 generator_train_step 函数训练生成网络:

        fake_data = generator(torch.randn(len(real_data), 100, 1, 1).to(device)).to(device)
        g_loss = generator_train_step(real_data, fake_data, loss, g_optimizer)

记录损失变化:

        d_loss_items.append(d_loss.item())
        g_loss_items.append(g_loss.item())
    d_loss_epoch.append(np.average(d_loss_items))
g_loss_epoch.append(np.average(g_loss_items))

(10) 绘制模型训练期间,判别网络和生成网络损失变化情况:

epochs = np.arange(num_epochs)+1
plt.plot(epochs, d_loss_epoch, 'bo', label='Discriminator Training loss')
plt.plot(epochs, g_loss_epoch, 'r-', label='Generator Training loss')
plt.title('Training and Test loss over increasing epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.grid('off')

损失变化
从上图中可以看出,生成网络和判别网络损失的变化与手写数字生成模型的损失变化模式并不相同,原因如下:

  • 人脸图像的尺寸相比手写数字更大,手写数字图像形状为 28 x 28 x 1,人脸图像形状为 64 x 64 x 3
  • 与人脸图像中的特征相比,手写数字图像中的特征较少
  • 与人脸图像中的信息相比,手写数字图像中仅少数像素中存在可用信息

(11) 训练过程完成后,生成图像样本:

generator.eval()
noise = torch.randn(64, 100, 1, 1, device=device)
sample_images = generator(noise).detach().cpu()
grid = vutils.make_grid(sample_images, nrow=8, normalize=True)
plt.imshow(grid.cpu().detach().permute(1,2,0))
plt.show()

生成图像样本

小结

DCGAN 是优秀的图像生成模型,其生成网路和判别网络都是使用卷积层和反卷积层构建的深度神经网络。生成网络接收一个随机噪声向量作为输入,并通过逐渐减小的反卷积层将其逐渐转化为与训练数据相似的输出图像;判别网络则是一个用于分类真实和生成图像的卷积神经网络。在本节中,我们学习了如何构建并训练 DCGAN 生成人脸图像。

系列链接

PyTorch深度学习实战(1)——神经网络与模型训练过程详解
PyTorch深度学习实战(2)——PyTorch基础
PyTorch深度学习实战(3)——使用PyTorch构建神经网络
PyTorch深度学习实战(4)——常用激活函数和损失函数详解
PyTorch深度学习实战(5)——计算机视觉基础
PyTorch深度学习实战(6)——神经网络性能优化技术
PyTorch深度学习实战(7)——批大小对神经网络训练的影响
PyTorch深度学习实战(8)——批归一化
PyTorch深度学习实战(9)——学习率优化
PyTorch深度学习实战(10)——过拟合及其解决方法
PyTorch深度学习实战(11)——卷积神经网络
PyTorch深度学习实战(12)——数据增强
PyTorch深度学习实战(13)——可视化神经网络中间层输出
PyTorch深度学习实战(14)——类激活图
PyTorch深度学习实战(15)——迁移学习
PyTorch深度学习实战(16)——面部关键点检测
PyTorch深度学习实战(17)——多任务学习
PyTorch深度学习实战(18)——目标检测基础
PyTorch深度学习实战(19)——从零开始实现R-CNN目标检测
PyTorch深度学习实战(20)——从零开始实现Fast R-CNN目标检测
PyTorch深度学习实战(21)——从零开始实现Faster R-CNN目标检测
PyTorch深度学习实战(22)——从零开始实现YOLO目标检测
PyTorch深度学习实战(23)——使用U-Net架构进行图像分割
PyTorch深度学习实战(24)——从零开始实现Mask R-CNN实例分割
PyTorch深度学习实战(25)——自编码器(Autoencoder)
PyTorch深度学习实战(26)——卷积自编码器(Convolutional Autoencoder)
PyTorch深度学习实战(27)——变分自编码器(Variational Autoencoder, VAE)
PyTorch深度学习实战(28)——对抗攻击(Adversarial Attack)
PyTorch深度学习实战(29)——神经风格迁移
PyTorch深度学习实战(30)——Deepfakes
PyTorch深度学习实战(31)——生成对抗网络(Generative Adversarial Network, GAN)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1409006.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《向量数据库指南》——Milvus Cloud向量数据库的新认知

除了数字上的里程碑,2023 年业务模式的改变也带来了很多定性的认知。这些认知帮助我们深化了对向量这种数据类型的理解,也引导了我们思考向量数据库未来的发展方向。 大模型应用仍处于初期阶段:避免重蹈智能手机时代“手电筒应用”的覆辙 回顾移动互联网早期,许多开发者创…

黑马苍穹外卖学习Day12

文章目录 工作台需求分析 Apache POI介绍入门案例 导出运营数据Excel报表需求分析代码开发 工作台 需求分析 Apache POI 介绍 入门案例 package com.sky.test;import org.apache.poi.xssf.usermodel.XSSFRow; import org.apache.poi.xssf.usermodel.XSSFSheet; import org.a…

ubuntu20根目录扩容

ubuntu根目录/ 或者 /home文件夹有时出现空间满了的情况,可以用gparted工具进行空间的重新分配。 首先,如果你是双系统,需要从windows系统下磁盘压缩分配一部分未使用的空间给ubuntu,注意压缩的空间要邻接ubuntu所在盘的位置。 …

【学网攻】 第(4)节 -- 交换机划分Vlan

文章目录 【学网攻】 第(1)节 -- 认识网络 【学网攻】 第(2)节 -- 交换机认识及使用【学网攻】 第(3)节 -- 交换机配置聚合端口 前言 网络已经成为了我们生活中不可或缺的一部分,它连接了世界各地的人们,让信息和资源得以自由流动。随着互联网的发展&am…

【pytorch】pytorch学习笔记

(实践)p5:线性回归问题中损失函数为什么要使用均方误差? 均方误差:即误差的平方和的平均数。 p8:1.pytorch不是一个完备的语言库,而是一个对于数据的gpu加速库,所以其没有对string…

【Golang入门教程】如何使用Goland创建并运行项目

自然语言处理的发展 文章目录 自然语言处理的发展**前言**创建新项目编辑运行/调试配置编写并运行代码总结强烈推荐专栏集锦写在最后 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站: 人工…

新能源汽车智慧充电桩管理方案:环境监测与充电安全多维感知

随着新能源技术的不断发展,新能源充电桩作为电动汽车的重要基础设施,其管理和维护变得尤为重要。环境监测类传感器能够实时监测充电桩周围的环境参数,如温度、湿度等,为管理人员提供及时、准确的数据,以便做出相应的调…

HTML+CSS:炫酷登录切换

效果演示 实现了一个登录注册页面的切换效果,当用户点击登录或注册按钮时,会出现一个叠加层,其中包含一个表单,用户可以在表单中输入用户名和密码,然后点击提交按钮进行登录或注册。当用户点击返回按钮时,会…

第三篇【传奇开心果短博文系列】Python的OpenCV库技术点案例示例:物体检测与识别

传奇开心果短博文系列 系列短博文目录Python的OpenCV库技术点案例示例短博文系列 短博文目录一、项目目标二、OpenCV物体检测与识别介绍三、分别示例代码四、扩展示例代码 系列短博文目录 Python的OpenCV库技术点案例示例短博文系列 短博文目录 一、项目目标 物体检测与识别…

Pycharm终端显示PS而不显示虚拟环境venv

PS表示当前使用的是powershell.exe,如果你要显示虚拟环境名,则要改为cmd.exe 解决办法: 打开File-settings-Tools-Terminal-shell path 在文件中找到设置,在工具中找到终端 把第四个Shell路径设置为cmd.exe 3. 点击确定&#xf…

腾合力携思腾云全系列产品亮相2023算云融合产业大会

由中国信息通信研究院、中国通信标准化协会联合主办的首届算云融合产业大会于2023年3月29-30日在北京国际会议中心举办。大会围绕“云融万物 算启未来”主题,设置“主论坛六大分论坛”,覆盖产业热点领域及方向,全面推动我国算力云服务发展。集…

自定义错误页面在Spring Boot中的实现

引言 在SpringBoot中,常用的异常处理有两种:一种是 BasicErrorController,另一种是 ControllerAdvice。BasicErrorController 用于处理非Controller抛出的异常,而ControllerAdvice 用于处理Controller抛出的异常,对于…

windows vs2005编译libssh2支持sftp

windows vs2005编译libssh2支持sftp 1、编译模块 ​ 需要用到4个库:libcurl、libssh2、openssl、zlib 为啥要用libssh2 因为libcurl实现sftp功能依赖libssh2,是对libssh2的封装。 所以也可以直接用libssh2实现sftp。 为啥要用openssl 因为libssh2依…

【linux】查看进程和子进程

在Linux系统中,可以使用多个命令来查看进程及其子进程。以下是一些常用的方法: 1. ps 命令 ps 命令用于显示当前进程的状态。可以结合不同的选项来查看进程及其子进程。 查看进程树: ps -auxf - -a 显示所有进程。 - -u 显示进程的用户/所…

AI伦理边界:探索人工智能伦理计算

大家好,近年学界与工业界都已开始关注并热议 AI 伦理治理问题,也在伦理规范研究上取得了初步进展。然而,由于 AI 伦理的抽象性,如何定量化度量智能系统的伦理,还是一个未知的难题。 李学龙教授团队在《中国科学&#…

【学网攻】 第(5)节 -- Cisco VTP的使用

文章目录 【学网攻】 第(1)节 -- 认识网络【学网攻】 第(2)节 -- 交换机认识及使用【学网攻】 第(3)节 -- 交换机配置聚合端口【学网攻】 第(4)节 -- 交换机划分Vlan 前言 网络已经成为了我们生活中不可或缺的一部分,它连接了世界各地的人们,让信息和资…

apple watch开通esim(一号双终端)报错解决方法

写在前面: 本文不一定可以解决您问题,本文记录了作者在遇到该情况时的处理办法,导致这个问题的原因会有很多,本文仅记录部分,仅供读者参考。与客服人员沟通时,请避免说esim,大多数客服人员不一定…

windbg :查看局部变量值

查看变量有以下几种常用方式&#xff1a; 仍以我们上篇 &#xff1a; 《windbg : x 命令》中的代码作为示例来讲解使用。 源码&#xff1a; #include <iostream>using namespace std;struct JKGirl{std::string name;int age;friend ostream& operator <<(o…

【机器学习300问】17、什么是欠拟合和过拟合?怎么解决欠拟合与过拟合?

一个问题出现了&#xff0c;我们首先要描述这个问题&#xff0c;然后分析问题出现的原因&#xff0c;找到原因后提出解决方案。废话不多说&#xff0c;直接上定义&#xff0c;然后通过回归和分类任务的例子来做解释。 一、什么是欠拟合和过拟合&#xff1f; &#xff08;1&am…

面试题:String s = new String(“xyz“) 创建了几个对象?

项目场景&#xff1a; 今天分享一篇基础技术面试题。 这个问题相信每个学习 java 的同学都不陌生&#xff0c;作为一个经典的面试题&#xff0c;到现在工作这么多年了我真是认为挺操蛋的一个问题&#xff0c;在网上到现在你仍然可以看见很多讨论这个问题的人&#xff0c;其中不…