作品简介 :关注公众号“电击小子程高兴的MATLAB小屋”获取优惠
主要内容
该模型将粒子群算法与BP神经网络结合用于BP神经网络的训练,即优化BP网络中的连接权值和各项阈值,然后利用神经网络分布式并行处理优势、自适应学习能力以及较好的鲁棒性能对风电功率数据进行预测。该算法优点是通过 PSO 算法进行 BP 算法的权值和阈值计算,得到一个比较理想的初始值,该初始值能够保证 BP 在预测中迅速达到全局最优解,从而改进了传统 BP 神经网络的不足。模型利用某风电场过去一年的实测数据作为训练样本,基于MATLAB编写PSO-BP算法进行短期风电功率预测。
模型研究
一、风电功率预测方法概览
从预测方式来看,主要有物理方法和统计方法,具体特点如下:
- 物理方法:基于气象学和风力发电机组的工作原理建立数学模型,考虑风速、风向、机组特性等因素来预测功率输出。常见的物理模型包括CFD模拟、功率曲线法、风功率密度法等。
- 统计方法:以对历史统计数据和NWP数据的分析研究为基础,建立NWP数据与风电场输出功率之间的映射关系。该方法直接利用NWP数据对风电场输出功率进行预测。统计方法同时适用于超短期、短期和中长期预测。
- 人工智能方法:属于更为先进的统计方法,利用机器学习算法,如人工神经网络、支持向量机、随机森林等,通过对大量历史数据的学习和训练,建立预测模型。这种方法可以更好地捕捉复杂的非线性关系和时空变化。更加详细的分类方式见下表。
二、PSO-BP算法流程
结果一览