时空预测网络ST-Resnet 代码复现

news2025/1/9 12:59:40

ST-ResNet(Spatio-Temporal Residual Network)是一种用于处理时空数据的深度学习模型,特别适用于视频、时间序列等具有时空结构的数据。下面是一个简单的使用PyTorch搭建ST-ResNet的示例代码。请注意,这只是一个基本的示例,具体的模型结构和超参数可能需要根据你的任务和数据进行调整。

ST-ResNet(Spatio-Temporal Residual Network)是一种深度学习模型,专门设计用于处理时空数据,例如视频、时间序列等。它是在传统的ResNet(Residual Network)基础上进行扩展,以更好地捕捉时空关系。以下是ST-ResNet的原理和用途的解释:

原理:

  1. 残差结构: ST-ResNet采用了残差结构,通过引入残差连接(residual connections),使网络更容易学习残差映射,有助于减轻训练过程中的梯度消失问题,加速模型收敛。

  2. 时空块: 模型主要由多个时空块组成,每个块包含卷积层和残差连接。这些块被设计为能够同时考虑空间和时间信息,使模型能够更好地理解时空关系。

  3. 层级结构: ST-ResNet通常包含多个层级,每个层级可以提取不同层次的时空特征。这样的层级结构使得模型能够在不同尺度上理解时空数据的结构,从而更好地进行预测。

用途:

  1. 视频预测: ST-ResNet在视频预测任务中表现出色。通过学习视频序列中的时空关系,它能够有效地预测视频的下一帧或未来若干帧。

  2. 交通流预测: 在交通流预测中,ST-ResNet可以从历史交通数据中学习时空模式,用于预测未来的交通状况,例如车流密度、拥堵情况等。

  3. 气象数据预测: 对于时空相关的气象数据,ST-ResNet可以用于预测未来的气象状况,例如温度、湿度、风速等。

  4. 人体行为分析: 在视频监控中,ST-ResNet可以用于分析人体行为,例如行人的运动轨迹、行为预测等。

  5. 其他时空数据预测: 除了上述应用,ST-ResNet还可以用于处理其他具有时空结构的数据,如物体轨迹、人员流动等,具有很强的通用性。

总体而言,ST-ResNet通过融合残差结构和时空块的设计,能够更好地捕获时空数据的复杂关系,从而在各种时空数据预测任务中取得较好的性能。

代码:

import torch
import torch.nn as nn

class STResNetBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
        super(STResNetBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding)

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.relu(out)
        out = self.conv2(out)
        out += residual
        out = self.relu(out)
        return out

class STResNet(nn.Module):
    def __init__(self, in_channels, out_channels, num_blocks, kernel_size=3):
        super(STResNet, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, padding=1)
        self.relu = nn.ReLU(inplace=True)

        self.res_blocks = nn.ModuleList([STResNetBlock(out_channels, out_channels) for _ in range(num_blocks)])

        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, padding=1)

    def forward(self, x):
        out = self.conv1(x)
        out = self.relu(out)

        for block in self.res_blocks:
            out = block(out)

        out = self.conv2(out)
        return out

# 示例用法
in_channels = 3  # 输入通道数,根据你的数据而定
out_channels = 64  # 输出通道数,根据你的数据而定
num_blocks = 5  # ResNet块的数量,根据需要调整

model = STResNet(in_channels, out_channels, num_blocks)

# 输入数据的形状,这里假设输入是(batch_size, channels, height, width)
input_data = torch.randn((32, 3, 256, 256))

# 前向传播
output = model(input_data)
print("Output shape:", output.shape)

运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1402168.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Hadoop基本概论

目录 一、大数据概论 1.大数据的概念 2.大数据的特点 3.大数据应用场景 二、Hadoop概述 1.Hadoop定义 2.Hadoop发展历史 3.Hadoop发行版本 4.Hadoop优势 5.Hadoop1.x/2.x/3.x 6.HDFS架构 7.Yarn架构 8.MapReduce架构 9.大数据技术生态体系 一、大数据概论 1.大数…

【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 广度优先搜索 状态压缩 LeetCode847 访问所有节点的最短路径 存在一个由 n 个节点组成的无向连通图,图中的节点按从 0 到 n - 1 编号。 给你一个数组 graph 表示这个图。其中,graph[i] 是一个列…

Java开发分析工具 JProfiler的详细使用方法解析(附 JProfiler for Mac许可证秘钥)

JProfiler 是一款功能强大的Java代码分析工具,JProfiler的直观UI可帮助您解决性能瓶颈,确定内存泄漏并了解线程问题且JProfiler Mac破解版配置会话非常简单,第三方集成使得入门变得轻而易举,并且以自然的方式呈现数据分析。 解…

AlmaLinux 8.9 安装图解

风险告知 本人及本篇博文不为任何人及任何行为的任何风险承担责任,图解仅供参考,请悉知!本次安装图解是在一个全新的演示环境下进行的,演示环境中没有任何有价值的数据,但这并不代表摆在你面前的环境也是如此。生产环境…

C++ 知识列表【图】

举例C的设计模式和智能指针 当谈到 C 的设计模式时,以下是一些常见的设计模式: 工厂模式(Factory Pattern):用于创建对象的模式,隐藏了对象的具体实现细节,只暴露一个公共接口来创建对象。 单例…

scanpy预处理总结

欢迎关注我们组的微信公众号,更多好文章在等你呦! 微信公众号名:碳硅数据 公众号二维码: 记录一下关于scanpy preprocessing的结果 import scanpy as sc adata sc.read("/Users/yxk/Desktop/test_dataset/pbmc/pbmc.h5ad&…

【Proteus仿真】【Arduino单片机】甲醛浓度检测报警器

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器,使用蜂鸣器LED模块、LCD1602显示模块、按键、MS1100甲醛传感器模块等。 主要功能: 系统运行后,LCD1602显示甲醛气体浓度检…

SystemC学习笔记(三) - 查看模块的波形

简述 波形在Simulation/Emulation中地位十分重要,尤其是在研发初期,只能通过波形来查看软件hang住的位置。 对于TLM来说,查看波形一般是指查看pvbus上的transaction,而对于SystemC本身来说,查看波形就是使用Gtkwave或…

Python 备份 CSDN 博客

代码来源 根据csdn 中的 一位博主 备份代码修改 新增加 增加了保存图片 到本地,和修改markdown中图片的路径 问题 如果博客的内容太多,需要分多个truck 传输,保存时出现’字符时,无法保存 注意 得获取登陆后的cookie,要不没法从服务器请求回博…

基于时空模型的视频异常检测

假设存在一个运动区域,规则要求只能进行特定的运动项目。 出于安全原因或因为业主不喜欢而禁止进行任何其他活动:)。 我们要解决的问题是:如果我们知道正确行为的列表,我们是否可以创建一个视频监控系统,在出现不常见的行为发出通…

IO、NIO、IO多路复用

IO是什么? IO分为两类,它们之间是有区别的,而且有很大的区别;1. 文件系统的IO 也叫本地io,就是和磁盘或者外围存储设备进行读写操作,外围设备有USB、移动硬盘等等;2. 网络的IO 将数据发送给对方…

获取主流电商平台商品价格,库存信息,数据分析,SKU详情

要接入API接口以采集电商平台上的商品数据,可以按照以下步骤进行: 1、找到可用的API接口:首先,需要找到支持查询商品信息的API接口。这些信息通常可以在电商平台的官方文档或开发者门户网站上找到。 2、注册并获取API密钥&#x…

「 典型安全漏洞系列 」05.XML外部实体注入XXE详解

1. XXE简介 XXE(XML external entity injection,XML外部实体注入)是一种web安全漏洞,允许攻击者干扰应用程序对XML数据的处理。它通常允许攻击者查看应用程序服务器文件系统上的文件,并与应用程序本身可以访问的任何后…

Windows 拦截系统睡眠、休眠

前言 在前一篇文章中,我们分析了以编程方式拦截 Winlogon 相关回调过程的具体做法,我们给出了一种拦截 RPC 异步回调的新方法——通过过滤特征码,我们可以对很多系统热键以及跟电源有关的操作做出“提前”响应。但是我们给出的代码并不能真正…

7.前端--CSS-复合选择器

1.什么是复合选择器 复合选择器是由两个或多个基础选择器,通过不同的方式组合而成的,可以更准确、更高效的选择目标元素(标签) 常用的复合选择器包括:后代选择器、子选择器、并集选择器、伪类选择器等等 2.后代选择器 …

DAY06_SpringBoot—入门properties/YML文件lombok插件及使用

目录 1 SpringBoot1.1 SpringBoot介绍1.2 SpringBoot入门案例1.2.1 安装SpringBoot插件1.2.2 创建SpringBoot项目 1.3 关于SpringBoot项目说明1.3.1 关于POM.xml文件说明1.3.2 依赖配置项1.3.3 build标签 1.4 SpringBoot Maven操作1.4.1 项目打包1.4.2 java命令运行项目 1.5 关…

Vulnhub-dc3

靶场下载 https://download.vulnhub.com/dc/DC-3-2.zip 信息收集 # nmap -sn 192.168.1.0/24 -oN live.nmap Starting Nmap 7.94 ( https://nmap.org ) at 2024-01-18 19:49 CST Nmap scan report for 192.168.1.1 (192.168.1.1) Host is up (0.00022s latency). MAC …

MySQL不同插入方式性能对比实验

最近负责的项目需要数据同步入库MySQL,为了测速那种入库方式效率比较高,为此进行了以下的对比实验,在此记录一下 实验表单数据格式 实验代码 共三种方法对比 mutiSqlInsert: 一条一条插入,最后一次提交 singleSqlInsert&…

RedisConnectionException: Unable to connect to redis.xxx.com:6379

报错 org.springframework.data.redis.connection.PoolException: Could not get a resource from the pool; nested exception is io.lettuce.core.RedisConnectionException: Unable to connect to redis.xxx.com:6379at org.springframework.data.redis.connection.lettuc…

力扣日记1.21-【回溯算法篇】77. 组合

力扣日记:【回溯算法篇】77. 组合 日期:2023.1.21 参考:代码随想录、力扣 终于结束二叉树了!听说回溯篇也是个大头,不知道这一篇得持续多久了…… 77. 组合 题目描述 难度:中等 给定两个整数 n 和 k&#…