大创项目推荐 深度学习花卉识别 - python 机器视觉 opencv

news2024/9/29 5:27:10

文章目录

  • 0 前言
  • 1 项目背景
  • 2 花卉识别的基本原理
  • 3 算法实现
    • 3.1 预处理
    • 3.2 特征提取和选择
    • 3.3 分类器设计和决策
    • 3.4 卷积神经网络基本原理
  • 4 算法实现
    • 4.1 花卉图像数据
    • 4.2 模块组成
  • 5 项目执行结果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习花卉识别 - python 机器视觉 opencv

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久,
是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。

花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境,
近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是重点观察花卉的花蕊特征、 花卉的纹理颜色和形状及其相关信息等。 然后在和现有的样本进行比对,
最终确定花卉的所属类别。

2 花卉识别的基本原理

花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。 经典的花卉识别设计如下图 所示,
这几个过程相互关联而又有明显区别。

在这里插入图片描述

3 算法实现

3.1 预处理

预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。 为了使实验结果更精准, 需要对图像数据进行预处理, 比如,
根据需要增强图像质量、 将图像裁剪成大小一致的形状、 避免不必要的失真等等。

3.2 特征提取和选择

要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。

特征提取旨在通过从现有特征中创建新特征(然后丢弃原始特征) 来减少数据集中的特征数量。 然后, 这些新的简化功能集应该能够汇总原始功能集中包含的大多数信息。
这样, 可以从原始集合的组合中创建原始特征的摘要版本。 对所获取的信息实现从测量空间到特征空间的转换。

3.3 分类器设计和决策

构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。 由于完美的分类性能通常是不可能实现的,
因此一般的任务是确定每种可能类别的概率。 输入数据的特征向量表示所提供的抽象使得能够开发出在尽可能大程度上与领域无关的分类理论。

在这里插入图片描述
在这里插入图片描述

在设计阶段, 决策功能必须重复多次, 直到错误达到特定条件为止。 分类决策是在分类器设计阶段基于预处理、 特征提取与选择及判决函数建立的模型,
对接收到的样本数据进行归类, 然后输出分类结果。

3.4 卷积神经网络基本原理

卷积神经网络是受到生物学启发的深度学习经典的多层前馈神经网络结构。 是一种在图像分类中广泛使用的机器学习算法。

CNN 的灵感来自我们人类实际看到并识别物体的方式。 这是基于一种方法,即我们眼睛中的神经元细胞只接收到整个对象的一小部分,而这些小块(称为接受场)
被组合在一起以形成整个对象。与其他的人工视觉算法不一样的是 CNN 可以处理特定任务的多个阶段的不变特征。
卷积神经网络使用的并不像经典的人工神经网络那样的全连接层, 而是通过采取局部连接和权值共享的方法, 来使训练的参数量减少, 降低模型的训练复杂度。

CNN 在图像分类和其他识别任务方面已经使传统技术的识别效果得到显著的改善。 由于在过去的几年中卷积网络的快速发展, 对象分类和目标检测能力取得喜人的成绩。

典型的 CNN 含有多个卷积层和池化层, 并具有全连接层以产生任务的最终结果。 在图像分类中, 最后一层的每个单元表示分类概率。

在这里插入图片描述

4 算法实现

4.1 花卉图像数据

花卉图像的获取除了通过用拍摄设备手工收集或是通过网络下载已经整理好的现有数据集, 还可以通过网络爬虫技术收集整理自己的数据集。

在这里插入图片描述

以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件

在这里插入图片描述

4.2 模块组成

示例代码主要由四个模块组成:

  • input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
  • model.py——模型模块,构建完整的CNN模型
  • train.py——训练模块,训练模型,并保存训练模型结果
  • test.py——测试模块,测试模型对图片识别的准确度

项目模块执行顺序

运行train.py开始训练。
训练完成后- 运行test.py,查看实际测试结果
input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List

import os
import math
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

# -----------------生成图片路径和标签的List------------------------------------
train_dir = 'D:/ML/flower/input_data'

roses = []
label_roses = []
tulips = []
label_tulips = []
dandelion = []
label_dandelion = []
sunflowers = []
label_sunflowers = []

定义函数get_files,获取图片列表及标签列表



    # step1:获取所有的图片路径名,存放到
    # 对应的列表中,同时贴上标签,存放到label列表中。
    def get_files(file_dir, ratio):
        for file in os.listdir(file_dir + '/roses'):
            roses.append(file_dir + '/roses' + '/' + file)
            label_roses.append(0)
        for file in os.listdir(file_dir + '/tulips'):
            tulips.append(file_dir + '/tulips' + '/' + file)
            label_tulips.append(1)
        for file in os.listdir(file_dir + '/dandelion'):
            dandelion.append(file_dir + '/dandelion' + '/' + file)
            label_dandelion.append(2)
        for file in os.listdir(file_dir + '/sunflowers'):
            sunflowers.append(file_dir + '/sunflowers' + '/' + file)
            label_sunflowers.append(3)
            # step2:对生成的图片路径和标签List做打乱处理
        image_list = np.hstack((roses, tulips, dandelion, sunflowers))
        label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))
    
        # 利用shuffle打乱顺序
        temp = np.array([image_list, label_list])
        temp = temp.transpose()
        np.random.shuffle(temp)

        # 将所有的img和lab转换成list
        all_image_list = list(temp[:, 0])
        all_label_list = list(temp[:, 1])
            # 将所得List分为两部分,一部分用来训练tra,一部分用来测试val
        # ratio是测试集的比例
        n_sample = len(all_label_list)
        n_val = int(math.ceil(n_sample * ratio))  # 测试样本数
        n_train = n_sample - n_val  # 训练样本数
    
        tra_images = all_image_list[0:n_train]
        tra_labels = all_label_list[0:n_train]
        tra_labels = [int(float(i)) for i in tra_labels]
        val_images = all_image_list[n_train:-1]
        val_labels = all_label_list[n_train:-1]
        val_labels = [int(float(i)) for i in val_labels]
    
        return tra_images, tra_labels, val_images, val_labels


**定义函数get_batch,生成训练批次数据**


    # --------------------生成Batch----------------------------------------------
    
    # step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab
    # 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像
    #   image_W, image_H, :设置好固定的图像高度和宽度
    #   设置batch_size:每个batch要放多少张图片
    #   capacity:一个队列最大多少
    定义函数get_batch,生成训练批次数据
    def get_batch(image, label, image_W, image_H, batch_size, capacity):
        # 转换类型
        image = tf.cast(image, tf.string)
        label = tf.cast(label, tf.int32)
    
        # make an input queue
        input_queue = tf.train.slice_input_producer([image, label])
    
        label = input_queue[1]
        image_contents = tf.read_file(input_queue[0])  # read img from a queue
    
        # step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。
        image = tf.image.decode_jpeg(image_contents, channels=3)
            # step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。
        image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
        image = tf.image.per_image_standardization(image)
    
        # step4:生成batch
        # image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32
        # label_batch: 1D tensor [batch_size], dtype=tf.int32
        image_batch, label_batch = tf.train.batch([image, label],
                                                  batch_size=batch_size,
                                                  num_threads=32,
                                                  capacity=capacity)
        # 重新排列label,行数为[batch_size]
        label_batch = tf.reshape(label_batch, [batch_size])
        image_batch = tf.cast(image_batch, tf.float32)
        return image_batch, label_batch


**model.py——CN模型构建**


    import tensorflow as tf
    
    #定义函数infence,定义CNN网络结构
    #卷积神经网络,卷积加池化*2,全连接*2,softmax分类
    #卷积层1
    def inference(images, batch_size, n_classes):
        with tf.variable_scope('conv1') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),
                                 name = 'weights',dtype=tf.float32)
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),
                                 name='biases', dtype=tf.float32)
            conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv1 = tf.nn.relu(pre_activation, name=scope.name)
    
        # 池化层1
        # 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。


        with tf.variable_scope('pooling1_lrn') as scope:
            pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')
            norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
    
        # 卷积层2
        # 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()
        with tf.variable_scope('conv2') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),
                                 name='biases', dtype=tf.float32)
    
            conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv2 = tf.nn.relu(pre_activation, name='conv2')
    
        # 池化层2
        # 3x3最大池化,步长strides为2,池化后执行lrn()操作,
        # pool2 and norm2
        with tf.variable_scope('pooling2_lrn') as scope:
            norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
            pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')
    
        # 全连接层3
        # 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()
        with tf.variable_scope('local3') as scope:
            reshape = tf.reshape(pool2, shape=[batch_size, -1])
            dim = reshape.get_shape()[1].value
            weights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),
                                 name='biases', dtype=tf.float32)
    
            local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    
        # 全连接层4
        # 128个神经元,激活函数relu()
        with tf.variable_scope('local4') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),
                                 name='biases', dtype=tf.float32)
    
            local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
    
        # dropout层
        #    with tf.variable_scope('dropout') as scope:
        #        drop_out = tf.nn.dropout(local4, 0.8)
    
        # Softmax回归层
        # 将前面的FC层输出,做一个线性回归,计算出每一类的得分
        with tf.variable_scope('softmax_linear') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),
                                  name='softmax_linear', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),
                                 name='biases', dtype=tf.float32)
    
            softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
    
        return softmax_linear


    # -----------------------------------------------------------------------------
    # loss计算
    # 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1
    # 返回参数:loss,损失值
    def losses(logits, labels):
        with tf.variable_scope('loss') as scope:
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,
                                                                           name='xentropy_per_example')
            loss = tf.reduce_mean(cross_entropy, name='loss')
            tf.summary.scalar(scope.name + '/loss', loss)
        return loss


    # --------------------------------------------------------------------------
    # loss损失值优化
    # 输入参数:loss。learning_rate,学习速率。
    # 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。
    def trainning(loss, learning_rate):
        with tf.name_scope('optimizer'):
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
            global_step = tf.Variable(0, name='global_step', trainable=False)
            train_op = optimizer.minimize(loss, global_step=global_step)
        return train_op


    # -----------------------------------------------------------------------
    # 评价/准确率计算
    # 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。
    # 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。
    def evaluation(logits, labels):
        with tf.variable_scope('accuracy') as scope:
            correct = tf.nn.in_top_k(logits, labels, 1)
            correct = tf.cast(correct, tf.float16)
            accuracy = tf.reduce_mean(correct)
            tf.summary.scalar(scope.name + '/accuracy', accuracy)
        return accuracy


**train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练**


    import input_data
    import model
    
    # 变量声明
    N_CLASSES = 4  # 四种花类型
    IMG_W = 64  # resize图像,太大的话训练时间久
    IMG_H = 64
    BATCH_SIZE = 20
    CAPACITY = 200
    MAX_STEP = 2000  # 一般大于10K
    learning_rate = 0.0001  # 一般小于0.0001
    
    # 获取批次batch
    train_dir = 'F:/input_data'  # 训练样本的读入路径
    logs_train_dir = 'F:/save'  # logs存储路径
    
    # train, train_label = input_data.get_files(train_dir)
    train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)
    # 训练数据及标签
    train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    # 测试数据及标签
    val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    
    # 训练操作定义
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train_acc = model.evaluation(train_logits, train_label_batch)
    
    # 测试操作定义
    test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)
    test_loss = model.losses(test_logits, val_label_batch)
    test_acc = model.evaluation(test_logits, val_label_batch)
    
    # 这个是log汇总记录
    summary_op = tf.summary.merge_all()
    
    # 产生一个会话
    sess = tf.Session()
    # 产生一个writer来写log文件
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    # val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)
    # 产生一个saver来存储训练好的模型
    saver = tf.train.Saver()
    # 所有节点初始化
    sess.run(tf.global_variables_initializer())
    # 队列监控
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
    # 进行batch的训练
    try:
        # 执行MAX_STEP步的训练,一步一个batch
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])
    
            # 每隔50步打印一次当前的loss以及acc,同时记录log,写入writer
            if step % 10 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            # 每隔100步,保存一次训练好的模型
            if (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
    
    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    
    finally:
        coord.request_stop()


**test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果**



    import matplotlib.pyplot as plt
    import model
    from input_data import get_files
    
    # 获取一张图片
    def get_one_image(train):
        # 输入参数:train,训练图片的路径
        # 返回参数:image,从训练图片中随机抽取一张图片
        n = len(train)
        ind = np.random.randint(0, n)
        img_dir = train[ind]  # 随机选择测试的图片
    
        img = Image.open(img_dir)
        plt.imshow(img)
        plt.show()
        image = np.array(img)
        return image


    # 测试图片
    def evaluate_one_image(image_array):
        with tf.Graph().as_default():
            BATCH_SIZE = 1
            N_CLASSES = 4
    
            image = tf.cast(image_array, tf.float32)
            image = tf.image.per_image_standardization(image)
            image = tf.reshape(image, [1, 64, 64, 3])
    
            logit = model.inference(image, BATCH_SIZE, N_CLASSES)
    
            logit = tf.nn.softmax(logit)
    
            x = tf.placeholder(tf.float32, shape=[64, 64, 3])
    
            # you need to change the directories to yours.
            logs_train_dir = 'F:/save/'
    
            saver = tf.train.Saver()
    
            with tf.Session() as sess:
    
                print("Reading checkpoints...")
                ckpt = tf.train.get_checkpoint_state(logs_train_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    print('Loading success, global_step is %s' % global_step)
                else:
                    print('No checkpoint file found')
    
                prediction = sess.run(logit, feed_dict={x: image_array})
                max_index = np.argmax(prediction)
                if max_index == 0:
                    result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])
                elif max_index == 1:
                    result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])
                elif max_index == 2:
                    result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])
                else:
                    result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])
                return result


    # ------------------------------------------------------------------------
    
    if __name__ == '__main__':
        img = Image.open('F:/input_data/dandelion/1451samples2.jpg')
        plt.imshow(img)
        plt.show()
        imag = img.resize([64, 64])
        image = np.array(imag)
        print(evaluate_one_image(image))


5 项目执行结果

执行train模块,结果如下:
在这里插入图片描述
同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
在这里插入图片描述

执行test模块,结果如下:

在这里插入图片描述
关闭显示的测试图片后,console查看测试结果如下:
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1396263.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ansys Zemax | 如何使用光学制造全息图修正像差

附件下载 联系工作人员获取附件 本文介绍了利用光学全息图降低单透镜像差的方法。在描述了表示全息图构造光束的两个 ZMX 文件之后,本文演示了如何在重现文件中设置 OFH。然后解释了如何轻松地从重现文件中访问任何结构造光束变量,以实现衍射受限单透镜…

Git一台电脑 配置多个账号

Git一台电脑 配置多个账号 Git一台电脑 配置多个账号 常用的Git版本管理有 gitee github gitlab codeup ,每个都有独立账号,经常需要在一个电脑上向多个代码仓提交后者更新代码,本文以ssh 方式为例配置 1 对应账号 公私钥生成 建议&#…

canvas绘制图形

目录 1、canvas绘制矩形 2、canvas绘制线 3、canvas绘制圆 4、canvas绘制多圈动画圆 HTML5<canvas>元素用于图形的绘制&#xff0c;Canvas API主要聚焦于2D图形。 1、canvas绘制矩形 canvas是一个二维网格&#xff0c;左上角坐标为(0,0)&#xff0c;横轴为x轴&…

【Git】实习使用记录

浏览器可以访问github仓库&#xff0c;但是使用git就用不了 https://blog.csdn.net/m0_63230155/article/details/132070860 可能是git http和https代理的问题 git config --global --unset http.proxy git config --global --unset https.proxy可能之前http和https之前是…

Python实现自动化办公(使用第三方库操作Excel)

1 使用 xlrd 读取Excel数据 1.1 获取具体单元格的数据 import xlrd# 1. 打开工作簿 workbook xlrd.open_workbook("D:/Python_study_projects/Python自动化办公/Excel/test1.xlsx") # 2. 打开工作表 sheet1 workbook.sheets()[0] # 选择所有工作表中的第一个 # …

mysql数据库:迁移数据目录至另一台服务器步骤

一、概述 最近由于项目需要&#xff0c;我们需要进行数据库服务器的更换和迁移工作。迁移计划和步骤如下&#xff1a; 1、首先&#xff0c;在新的数据库服务器上进行环境的搭建和配置&#xff0c;确保数据库版本、配置等一致。 2、然后&#xff0c;将备份的数据库数据导入到…

【docker-compose】【nginx】内网环境https配置

目录 1、openssl生成自签名证书和私钥2、nginx.conf配置ssl3、docker-compose挂载 1、openssl生成自签名证书和私钥 在部署服务器上&#xff0c;新建cert目录&#xff0c;执行以下指令&#xff0c;然后生成.crt和.key文件 openssl req -newkey rsa:2048 -nodes -keyout rsa_pri…

寒假刷题-递归与递推

寒假刷题 92. 递归实现指数型枚举 解法1递归 使用递归对每一个坑位进行选择&#xff0c;每个坑位有两种选择&#xff0c;填或者不填&#xff0c;使用st数组来记录每个坑位的状态&#xff0c;u来记录已经有多少坑位有了选择。 每个坑位有2钟选择&#xff0c;n个坑位的复杂度就…

Pytest插件pytest-django让Django测试更高效

在Django应用开发中&#xff0c;测试是确保应用质量的关键环节。然而&#xff0c;Django自带的测试框架并非总能满足开发者的需求&#xff0c;而Pytest插件 pytest-django 则为我们提供了更为灵活、强大的测试工具。本文将深入介绍 pytest-django 插件的基本用法和实际案例&…

【springboot】配置文件入门

配置文件入门 配置文件最重要的目的&#xff1a;解决硬编码问题(代码写死) 我们接下来主要介绍两个方面&#xff1a;常见的配置项和配置文件的使用 SpringBoot 的配置文件,有三种格式 propertiesyamlyml(yaml的简写) 用的较多的是yml和properties文件 如果项目中,同时存在…

常用中间件漏洞

IIS6 IIS7 安装 控制面板-----打开关闭windows功能 添加角色-----添加IIS 启动之后访问localhost 复现 服务器换成IIS7 访问报错 大概就是缺少CGI模块 问题解决 添加php-cgi的路径 添加脚本映射 修改php.ini文件 将 cgi.fix_pathinfo1 然后设置一个图片 访问 在后缀加上/.…

情人节专属--HTML制作情人节告白爱心

💕效果展示 💕html展示 <!DOCTYPE html> <html lang="en" > <head>

C#: form 窗体的各种操作

说明&#xff1a;记录 C# form 窗体的各种操作 1. C# form 窗体居中显示 // 获取屏幕的宽度和高度 int screenWidth Screen.PrimaryScreen.Bounds.Width; int screenHeight Screen.PrimaryScreen.Bounds.Height;// 设置窗体的位置 this.StartPosition FormStartPosition.M…

vue基于Spring Boot共享单车租赁报修信息系统

共享单车信息系统分为二个部分&#xff0c;即管理员和用户。该系统是根据用户的实际需求开发的&#xff0c;贴近生活。从管理员处获得的指定账号和密码可用于进入系统和使用相关的系统应用程序。管理员拥有最大的权限&#xff0c;其次是用户。管理员一般负责整个系统的运行维护…

Byrdhouse AI实时语音翻译工具,可以在视频通话中翻译100多种语言

你是否曾经在跨国会议或与外国友人聊天时&#xff0c;因为语言不通而感到尴尬或困扰&#xff1f;是不是还在找可以实时翻译的软件或者APP&#xff1f;现在&#xff0c;有了这款语音翻译神器&#xff0c;一切都将变得简单&#xff01; 免费使用链接&#xff1a;https://byrdhous…

JVM性能调优-垃圾收集器ZGC详解

1. ZGC收集器(-XX:UseZGC) 参考文章&#xff1a;Main - Main - OpenJDK Wiki http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf ZGC是一款JDK 11中新加入的具有实验性质的低延迟垃圾收集器&#xff0c;ZGC可以说源自于是Azul System公司开发的C4&#xff08;…

必学!白银现货排期基础知识

白银现货排期是一种交易模式&#xff0c;它涉及到未来交货的安排。在这种模式之下&#xff0c;买卖双方可以预先达成协议&#xff0c;确定未来某一时间的交货安排。现货排期这种交易方式的特点&#xff0c;是白银会在约定的时间交付&#xff0c;而价格可以在合约签订时确定。 白…

计算机网络——数据链路层(1)

一、概述 在计算机网络中&#xff0c;数据链路层承担着点对点通信的任务&#xff0c;用于跨物理层在网段节点之间参数数据。它在网络分层中处于物理层之上&#xff0c;网路层之下。 在链路层的讨论中&#xff0c;我们将看到两种截然不同类型的链路层信道。第一种类型是广播信道…

WAF攻防相关知识点总结1--信息收集中的WAF触发及解决方案

什么是WAF WAF可以通过对Web应用程序的流量进行过滤和监控&#xff0c;识别并阻止潜在的安全威胁。WAF可以检测Web应用程序中的各种攻击&#xff0c;例如SQL注入、跨站点脚本攻击&#xff08;XSS&#xff09;、跨站请求伪造&#xff08;CSRF&#xff09;等&#xff0c;并采取相…

python如何包含其他路径的模块

python 包含其他路径的模块&#xff1a; 例如目录结构: dir1 |__ init.py |__ module1.py dir2 |__ main.py main.py from dir1 import module1首先需要在 dir1 添加 init.py 文件&#xff0c;该文件可以是空文件。 其次需要将dir1 的父目录添加到python 解释器的&#xf…