使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA

news2024/11/28 0:44:42

目前基于大模型的信息检索有两种方法,一种是基于微调的方法,一种是基于 RAG 的方法。

信息检索和知识提取是一个不断发展的领域,随着大型语言模型(LLM)和知识图的出现,这一领域发生了显着的变化,特别是在多跳问答的背景下。

接下来我们继续深入,跟着文章完成一个项目,该项目利用 Neo4j 矢量索引和 Neo4j 图数据库的强大功能来实现检索增强生成系统,旨在为用户查询提供精确且上下文丰富的答案。

该系统采用向量相似性搜索来检索非结构化信息,同时访问图数据库来提取结构化数据,以确保响应不仅全面,而且锚定在验证过的知识中。

这种方法对于解决多跳问题尤其重要,因为单个查询可能需要分解为多个子问题,并且可能需要来自大量文档的信息才能生成准确的答案。

图片

在数据既丰富又复杂的时代,上述系统成为一个至关重要的工具,它确保用户查询得到的答案既包含广泛的知识,又保持验证准确性,无缝地弥合了非结构化数据和结构化知识图之间的鸿沟。

最后一步,系统将所检索到的非结构化和结构化信息传递给新的大型语言模型 Mistral-7b,用于文本生成。这种集成确保生成的响应不仅依赖于模型中内置的广泛知识,还经过特定实时数据的微调和丰富,这些数据来自向量和图形数据库的检索,从而提供更加详尽、准确和与上下文相关的信息,以提升用户体验。

用通俗易懂方式讲解系列

  • 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)
  • 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
  • 用通俗易懂的方式讲解:28张图全解深度学习知识!
  • 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库
  • 用通俗易懂的方式讲解:实体关系抽取入门教程
  • 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
  • 用通俗易懂的方式讲解:大模型算法面经指南(附答案)
  • 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期
  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain
  • 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统
  • 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览
  • 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了NLP面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、添加微信号:mlc2060,备注:技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:技术交流

在这里插入图片描述

01 GraphCypherQAChain

GraphCypherQAChain 类在自然语言问题查询图数据库(特别是 Neo4j)领域发挥着重要作用。它利用 LLM 从用户输入的问题生成 Cypher 查询,然后执行这些查询在 Neo4j 图形数据库中,并根据查询结果提供答案。

这一工具使用户能够检索特定数据,而无需编写复杂的 Cypher 查询,从而使存储在图形数据库中的数据更容易访问和互动。

02 Mistral 7B

Mistral 7B 是最新的大型语言模型,因其在一系列基准测试中的卓越性能而受到认可,展示了处理各种语言任务和查询的熟练程度,如下图所示。

图片

在检索增强生成 (RAG) 架构中,Mistral 7B 发挥着关键作用,它根据向量和图形搜索检索到的信息合成和生成文本,确保输出不仅上下文丰富,而且能够根据用户的查询精确定制。它有效地弥合了非结构化数据和结构化知识图之间的差距,提供混合了预先训练的知识和实时、经过验证的数据的答案。

03 执行

让我们从安装依赖项开始。

pip install langchain openai wikipedia tiktoken neo4j python-dotenv transformers
pip install -U sagemaker

Neo4j 向量索引

我们首先导入必要的库和模块,为数据集准备、Neo4j 向量索引的接口以及使用 Mistral 7B 的文本生成功能奠定基础。使用 dotenv,它可以安全地加载环境变量,保护 OpenAI API 和 Neo4j 数据库的敏感信息。

import os
import re
from langchain.vectorstores.neo4j_vector import Neo4jVector
from langchain.document_loaders import WikipediaLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from dotenv import load_dotenv

load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
os.environ["NEO4J_URI"] = os.getenv('NEO4J_URI')
os.environ["NEO4J_USERNAME"] = os.getenv('NEO4J_USERNAME')
os.environ["NEO4J_PASSWORD"] = os.getenv('NEO4J_PASSWORD')

在这里,我们使用 Leonhard Euler 的维基百科页面来进行我们的实验。我们使用该 bert-base-uncased 模型来标记文本。WikipediaLoader 加载指定页面的原始内容,然后使用 LangChain 的 RecursiveCharacterTextSplitter 将其分成更小的文本片段。

该拆分器确保每个块最大化为 200 个标记,其中重叠 20 个标记,遵守嵌入模型的上下文窗口限制,并确保不会丢失上下文的连续性。

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

def bert_len(text):
    tokens = tokenizer.encode(text)
    return len(tokens)

raw_documents = WikipediaLoader(query="Leonhard Euler").load()
text_splitter = RecursiveCharacterTextSplitter(
          chunk_size = 200,
          chunk_overlap  = 20,
          length_function = bert_len,
          separators=['\n\n', '\n', ' ', ''],
      )

documents = text_splitter.create_documents([raw_documents[0].page_content])

分块文档作为节点实例化到 Neo4j 向量索引中。它使用 Neo4j 图数据库和 OpenAI 嵌入的核心功能来构建该向量索引。

# Instantiate Neo4j vector from documents
neo4j_vector = Neo4jVector.from_documents(
    documents,
    OpenAIEmbeddings(),
    url=os.environ["NEO4J_URI"],
    username=os.environ["NEO4J_USERNAME"],
    password=os.environ["NEO4J_PASSWORD"]
)

在提取向量索引中的文档后,我们对示例用户查询执行向量相似度搜索,并检索前 2 个最相似的文档。

query = "Who were the siblings of Leonhard Euler?"
vector_results = neo4j_vector.similarity_search(query, k=2)
for i, res in enumerate(vector_results):
    print(res.page_content)
    if i != len(vector_results)-1:
        print()
vector_result = vector_results[0].page_content

图片

构建知识图谱

受到 NaLLM 项目的高度启发,我们使用他们的开源项目从非结构化数据构建知识图。

下面是使用 Leonhard Euler 的维基百科文章中的单个文档块构建的知识图。

图片

在深入研究该项目可以学到很多关于使用 LLM 构建知识图谱的知识。例如,以下是从非结构化文本中捕获实体和关系的提示:

"""
You are a data scientist working for a company that is building a graph database. Your task is to extract information from data and convert it into a graph database.
Provide a set of Nodes in the form [ENTITY_ID, TYPE, PROPERTIES] and a set of relationships in the form [ENTITY_ID_1, RELATIONSHIP, ENTITY_ID_2, PROPERTIES].
It is important that the ENTITY_ID_1 and ENTITY_ID_2 exists as nodes with a matching ENTITY_ID. If you can't pair a relationship with a pair of nodes don't add it.
When you find a node or relationship you want to add try to create a generic TYPE for it that  describes the entity you can also think of it as a label.

Example:
Data: Alice lawyer and is 25 years old and Bob is her roommate since 2001. Bob works as a journalist. Alice owns a the webpage www.alice.com and Bob owns the webpage www.bob.com.
Nodes: ["alice", "Person", {"age": 25, "occupation": "lawyer", "name":"Alice"}], ["bob", "Person", {"occupation": "journalist", "name": "Bob"}], ["alice.com", "Webpage", {"url": "www.alice.com"}], ["bob.com", "Webpage", {"url": "www.bob.com"}]
Relationships: ["alice", "roommate", "bob", {"start": 2021}], ["alice", "owns", "alice.com", {}], ["bob", "owns", "bob.com", {}]
"""

有很多有趣的功能,同时可以进行改进。

Neo4j DB QA 链

接下来,我们导入必要的库来设置 Neo4j DB QA 链。

from langchain.chat_models import ChatOpenAI
from langchain.chains import GraphCypherQAChain
from langchain.graphs import Neo4jGraph

构建图表后,我们需要连接到 Neo4jGraph 实例并可视化模式。

graph = Neo4jGraph(
    url=os.environ["NEO4J_URI"], username=os.environ["NEO4J_USERNAME"], password=os.environ["NEO4J_PASSWORD"]
)

print(graph.schema)
Node properties are the following:
[{'labels': 'Person', 'properties': [{'property': 'name', 'type': 'STRING'}, 
{'property': 'nationality', 'type': 'STRING'}, 
{'property': 'death_date', 'type': 'STRING'}, 
{'property': 'birth_date', 'type': 'STRING'}]}, 
{'labels': 'Location', 'properties': [{'property': 'name', 'type': 'STRING'}]}, 
{'labels': 'Organization', 'properties': [{'property': 'name', 'type': 'STRING'}]}, 
{'labels': 'Publication', 'properties': [{'property': 'name', 'type': 'STRING'}]}]

Relationship properties are the following:
[]
The relationships are the following:
['(:Person)-[:worked_at]->(:Organization)', 
'(:Person)-[:influenced_by]->(:Person)', 
'(:Person)-[:born_in]->(:Location)', 
'(:Person)-[:lived_in]->(:Location)', 
'(:Person)-[:child_of]->(:Person)', 
'(:Person)-[:sibling_of]->(:Person)', 
'(:Person)-[:published]->(:Publication)']

抽象 GraphCypherQAChain 所有细节并输出自然语言问题(NLQ)的自然语言响应。然而,在内部,它使用 LLM 生成该问题的 Cypher 查询,并从图形数据库中检索结果,最后使用该结果生成最终的自然语言响应,再次使用 LLM。

chain = GraphCypherQAChain.from_llm(
    ChatOpenAI(temperature=0), graph=graph, verbose=True
)

graph_result = chain.run("Who were the siblings of Leonhard Euler?")

图片

graph_result
'The siblings of Leonhard Euler were Maria Magdalena and Anna Maria.'

Mistral-7b-指令

我们在 AWS SageMaker 环境中从 Hugging Face 设置 Mistral-7B 终端节点。

import json
import sagemaker
import boto3
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri

try:
    role = sagemaker.get_execution_role()
except ValueError:
    iam = boto3.client('iam')
    role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
    
hub = {
    'HF_MODEL_ID':'mistralai/Mistral-7B-Instruct-v0.1',
    'SM_NUM_GPUS': json.dumps(1)
}

huggingface_model = HuggingFaceModel(
    image_uri=get_huggingface_llm_image_uri("huggingface",version="1.1.0"),
    env=hub,
    role=role, 
)

最终响应是通过构造提示来制作的,该提示包括指令、向量索引中的相关数据、图形数据库中的相关信息以及用户的查询。

然后将此提示传递给 Mistral-7b 模型,模型根据提供的信息生成有意义且准确的响应。

mistral7b_predictor = huggingface_model.deploy(
    initial_instance_count=1,
    instance_type="ml.g5.4xlarge",
    container_startup_health_check_timeout=300,
)

query = "Who were the siblings of Leonhard Euler?"
final_prompt = f"""You are a helpful question-answering agent. Your task is to analyze 
and synthesize information from two sources: the top result from a similarity search 
(unstructured information) and relevant data from a graph database (structured information). 
Given the user's query: {query}, provide a meaningful and efficient answer based 
on the insights derived from the following data:

Unstructured information: {vector_result}. 
Structured information: {graph_result}.
"""

response = mistral7b_predictor.predict({
    "inputs": final_prompt,
})

print(re.search(r"Answer: (.+)", response[0]['generated_text']).group(1))
The siblings of Leonhard Euler were Maria Magdalena and Anna Maria.

要点

Neo4j 向量检索与 GraphCypherQAChainMistral-7b 的集成提供了一个强大的系统来处理复杂数据,有效地弥合了大量非结构化数据和复杂的图形知识之间的差距,通过综合两个数据源的信息,为用户查询提供全面、准确的响应。

利用 Neo4j 进行向量相似性搜索和图形数据库检索,可确保生成的响应不仅通过 Mistral-7b 的大量预先训练的知识获得信息,而且还通过来自向量和图形数据库的实时数据进行上下文丰富和验证。

最后,作者的目标是在未来的实验中尝试多跳查询,因为最初建立模块化管道对于适应快速发展的人工智能领域是必要的。

04 总结

该项目强调了 Neo4j Vector Index 和 LangChain 的有效组合,GraphCypherQAChain 分别可以浏览非结构化数据和图形知识,然后使用 Mistral-7b 生成明智且准确的响应。

通过使用 Neo4j 从向量索引和图形数据库检索相关信息,系统确保生成的响应不仅上下文丰富,而且锚定在经过验证的实时知识中。

该实现展示了检索增强生成的实际应用,其中利用来自不同数据源的综合信息来生成响应,这些响应是预先训练的知识和特定的实时数据的和谐混合,从而提高了预测的准确性和相关性。对用户查询的响应。

参考资料

https://medium.com/neo4j/enhanced-qa-integrating-unstructured-and-graph-knowledge-using-neo4j-and-langchain-6abf6fc24c27

https://github.com/neo4j/NaLLM/tree/main

https://medium.com/neo4j/harnessing-large-language-models-with-neo4j-306ccbdd2867

https://medium.com/neo4j/knowledge-graphs-llms-fine-tuning-vs-retrieval-augmented-generation-30e875d63a35

https://medium.com/neo4j/knowledge-graphs-llms-multi-hop-question-answering-322113f53f51

https://medium.com/neo4j/langchain-library-adds-full-support-for-neo4j-vector-index-fa94b8eab334

https://mistral.ai/news/announcing-mistral-7b/

https://www.youtube.com/watch?v=Hg4ahTQlBm0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1392849.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

河南选调生报名照片上传成功,不能大于50kb

河南选调生报名照片要求: 1、上传近期正面免冠证件照 2、照片背景:要求为蓝底 3、照片格式:jpg格式 4、照片宽高比例约为1.3:1.6,大小为130160像素 5、照片大小:50kb以下,最终效果以输出后的大小为准

pytest学习和使用-pytest如何进行分布式测试?(pytest-xdist)

1 什么是分布式测试? 在进行本文之前,先了解些基础知识,什么是分布式测试?分布式测试:是指通过局域网和Internet,把分布于不同地点、独立完成特定功能的测试计算机连接起来,以达到测试资源共享…

SpringMVC JSON数据处理见解6

6.JSON数据处理 6.1.添加json依赖 springmvc 默认使用jackson作为json类库,不需要修改applicationContext-servlet.xml任何配置&#xff0c;只需引入以下类库springmvc就可以处理json数据&#xff1a; <!--spring-json依赖--> <dependency><groupId>com.f…

群晖搭建LDAP服务器实现一个账号登录DSM、Gitea、jellyfin

文章目录 前言安装LDAP Server新建群组新增用户 DSM加入LDAPDSM使用LDAP登录 Gitea配置登录取消其登录权限 Jellyfin配置登录 总结 前言 LDAP&#xff08;轻量级目录访问协议&#xff09;是一种用于访问和管理分布式目录服务的协议&#xff0c;它具有以下好处&#xff1a; 集…

flutter开发windows桌面软件,使用Inno Setup打包成安装程序,支持中文

最近使用flutter开发windows桌面软件的时候&#xff0c;想要将软件打包成安装程序&#xff0c;使用了flutter官方推荐的msix打包&#xff0c;但是打包出来的软件生成的桌面快捷方式有蓝色背景&#xff1a; 这个蓝色背景应该是没有设置为动态导致的&#xff0c;windows系统的屏幕…

POE工业交换机:点亮灯光控制与建筑自动化的新时代

随着科技的不断发展&#xff0c;灯光控制和建筑自动化在现代建筑中扮演着重要角色。而POE工业交换机作为一种创新的网络设备&#xff0c;不仅能够为灯光控制和建筑自动化提供稳定可靠的网络通信&#xff0c;还具备便捷的供电功能。本文将探讨POE工业交换机对灯光控制和建筑自动…

Unity URP切换品质和Feature开关的性能问题

现在对我的项目进行安卓端发布&#xff0c;需要切换品质和一些Feature开关。 我是这样做的。 划分品质 首先Renerer分为2个Android和PC&#xff0c;图中其他不用参考。 每个副本的URP Asset分为pc和android&#xff0c;例如图中的 hall和hall_android。 我们可以看到hall用的…

【性能调优】local模式模式下flink处理离线任务能力分析

文章目录 一. flink的内存管理1.Jobmanager的内存模型2.TaskManager的内存模型2.1. 模型说明2.2. 通讯、数据传输方面2.3. 框架、任务堆外内存2.4. 托管内存 3.任务分析 二. 单个节点的带宽瓶颈1. 带宽相关理论2. 使用speedtest-cli 测试带宽3. 任务分析3. 其他工具使用介绍 本…

使用CSS计算高度铺满屏幕

前言 今天写项目时出现高度设置百分百却不占满屏幕&#xff0c;第一反应看自己设置的是块级元素还是行级元素。看了几篇博客&#xff0c;发现并不能解决问题。脱离文档流的做法都没考虑&#xff0c;前期模板搭建脱离文档流&#xff0c;后面开发会出现很多问题。 以上图片是我…

几何_直线方程 Ax + By + C = 0 的系数A,B,C几何含义是?

参考&#xff1a; 直线方程 Ax By C 0 的系数A&#xff0c;B&#xff0c;C有什么几何含义&#xff1f;_设直线 l 的方程为axbyc0 怎么理解-CSDN博客 1. A B的含义&#xff1a;组成一个与直线垂直的向量 我们先来看A和B有什么含义。 在直线上取任意两点 P1:&#xff08;x1…

无界面自动化测试(IDEA+Java+Selenium+testng)(PhantomJS)

自动化测试&#xff08;IDEAJavaSeleniumtestng&#xff09;(PhantomJS)_phantomjs怎么写js脚本idea-CSDN博客 上述连接是参考&#xff1a;现在如果按照如上链接进行操作大概率会失败&#xff0c;下面会针对如上链接的部分步骤做出修改 1、在pom.xml文件中需要使用低版本sele…

【Go学习】macOS+IDEA运行golang项目,报command-line-arguments,undefined

写在前面的话&#xff1a;idea如何配置golang&#xff0c;自行百度 问题1&#xff1a;通过idea的terminal执行go test报错 ✘ xxxxxmacdeMacBook-Pro-3  /Volumes/mac/.../LearnGoWithTests/hello  go test go: go.mod file not found in current directory or any parent …

【汇编】 13.3 对int iret和栈的深入理解

书中示例 assume cs:codecode segment start:mov ax,csmov ds,axmov si,offset lpmov ax,0mov es,axmov di,200hmov cx,offset end0-offset lpcldrep movsb ;lp到end0的指令传送到0:200处mov ax,0mov es,axmov word ptr es:[7ch*4],200hmov word ptr es:[7ch*42],0 ;设置7c表项…

AJAX初步与原理

AJAX的语法 服务器和浏览器之间的通信&#xff0c;AJAX可以在浏览器内访问另一服务器。服务器是存储数据的电脑。 AJAX是用axios库&#xff0c;与服务器进行数据通信。 原理之后讲到Promise对象再讲&#xff0c;这里是axios函数内传参可以对服务器进行访问&#xff0c;然后对…

Go新项目-调研关于go项目中redis的使用场景,lua实战(7)

文章目录 参考地址redis的使用场景的解释1、缓存2、排行榜3、计数器4、分布式会话5、分布式锁6、社交网络7、最新列表8、消息系统9、地理位置10、搜索引擎 常用命令实际场景1、缓存2、数据共享分布式3、分布式锁4、全局ID5、计数器6、限流7、位统计8、购物车9、用户消息时间线t…

【数据分析实战】冰雪大世界携程景区游客客源分布pyecharts地图

文章目录 引言数据集展示Python代码可视化展示本人浅薄分析 写在最后 今年冬天&#xff0c;哈尔滨冰雪旅游"杀疯了"&#xff0c;在元旦假期更是被南方游客"包场"。据哈尔滨市文化广电和旅游局提供大数据测算&#xff0c;截至元旦假日第3天&#xff0c;哈尔…

第二讲_HarmonyOS应用创建和运行

HarmonyOS应用创建和运行 1. 创建一个HarmonyOS应用2. 运行新项目2.1 创建本地模拟器2.2 启动本地模拟器2.3 在本地模拟器运行项目 1. 创建一个HarmonyOS应用 打开DevEco Studio&#xff0c;在欢迎页单击Create Project&#xff0c;创建一个新工程。 选择创建Application应用。…

redis数据安全(三)数据持久化 AOF

接上一篇RDB&#xff0c;本篇看下Redis数据持久化的第二种方式AOF。 目录 一、AOF原理 1、写入机制&#xff1a; 2、缓冲机制&#xff1a; 3、重写机制 &#xff1a; 4、运行流程 二、AOF文件配置 1、开启AOF&#xff1a; 2、自动触发AOF重写 3、重写规则&#xff1…

VRPSolverEasy:支持VRP问题快速建模的精确算法Python包

文章目录 前言一步步安装免费版主要模块介绍1. depot point2. customer point3. links4. vehicle type VRPTW 算例数据说明模型建立输出求解状态及结果 前言 VRPSolverEasy 是用于车辆路径问题&#xff08;VRP&#xff09;的最先进的分支切割和定价算法求解器1&#xff0c;它的…

苹果要在iPhone上运行AI大模型?

近两年&#xff0c;人工智能&#xff08;AI&#xff09;技术已经成为各大科技公司的重点研究领域&#xff0c;苹果公司自然也不甘落后。最新消息称&#xff0c;苹果甚至打算在iPhone上直接运行AI大模型... 据苹果AI研究人员表示&#xff0c;他们发明了一种创新的闪存利用技术&a…