【动态规划】【C++算法】639 解码方法 II

news2024/10/6 5:54:17

作者推荐

【矩阵快速幂】封装类及测试用例及样例

涉及知识点

动态规划 字符串 滚动向量

LeetCode 639. 解码方法 II

一条包含字母 A-Z 的消息通过以下的方式进行了 编码 :
‘A’ -> “1”
‘B’ -> “2”

‘Z’ -> “26”
要 解码 一条已编码的消息,所有的数字都必须分组,然后按原来的编码方案反向映射回字母(可能存在多种方式)。例如,“11106” 可以映射为:
“AAJF” 对应分组 (1 1 10 6)
“KJF” 对应分组 (11 10 6)
注意,像 (1 11 06) 这样的分组是无效的,因为 “06” 不可以映射为 ‘F’ ,因为 “6” 与 “06” 不同。
除了 上面描述的数字字母映射方案,编码消息中可能包含 '’ 字符,可以表示从 ‘1’ 到 ‘9’ 的任一数字(不包括 ‘0’)。例如,编码字符串 "1" 可以表示 “11”、“12”、“13”、“14”、“15”、“16”、“17”、“18” 或 “19” 中的任意一条消息。对 “1*” 进行解码,相当于解码该字符串可以表示的任何编码消息。
给你一个字符串 s ,由数字和 '’ 字符组成,返回 解码 该字符串的方法 数目 。
由于答案数目可能非常大,返回 109 + 7 的 模 。
示例 1:
输入:s = "
"
输出:9
解释:这一条编码消息可以表示 “1”、“2”、“3”、“4”、“5”、“6”、“7”、“8” 或 “9” 中的任意一条。
可以分别解码成字符串 “A”、“B”、“C”、“D”、“E”、“F”、“G”、“H” 和 “I” 。
因此,“" 总共有 9 种解码方法。
示例 2:
输入:s = "1

输出:18
解释:这一条编码消息可以表示 “11”、“12”、“13”、“14”、“15”、“16”、“17”、“18” 或 “19” 中的任意一条。
每种消息都可以由 2 种方法解码(例如,“11” 可以解码成 “AA” 或 “K”)。
因此,“1*” 共有 9 * 2 = 18 种解码方法。
示例 3:
输入:s = “2*”
输出:15
解释:这一条编码消息可以表示 “21”、“22”、“23”、“24”、“25”、“26”、“27”、“28” 或 “29” 中的任意一条。
“21”、“22”、“23”、“24”、“25” 和 “26” 由 2 种解码方法,但 “27”、“28” 和 “29” 仅有 1 种解码方法。
因此,“2*” 共有 (6 * 2) + (3 * 1) = 12 + 3 = 15 种解码方法。
提示:
1 <= s.length <= 105
s[i] 是 0 - 9 中的一位数字或字符 ‘*’

分析

时间复杂度:O(nm) n=s.length m = 9(1到9)。

动态规划的细节,方便检查

动态规划的状态表示dp[j]表示s[0,i) 以 j+'A’结尾的合法串数量。dp[0]是占位符,无意义,请忽略
动态规划的转移方程见下文
动态规划的初始状态如果是*,dp[1,9]=1,否则dp[s[0]-‘A’]=1
动态规划的填表顺序i从1到大,确保动态规划的无后效性
动态规划的返回值求和 [ 1 , 26 ] j ^{j}_{[1,26]} [1,26]jdp[j]

动态规划的转移方程

有两种转移方式:
新建字符: 当前字符必须是[1,9],前一个字符不限。
和前面的串最后一个字符结合:
当前字符:[0,9] 前一字符:1

当前字符:[0,6] 前一字符 2

代码

封装类

template<int MOD = 1000000007>
class C1097Int
{
public:
	C1097Int(long long llData = 0) :m_iData(llData% MOD)
	{

	}
	C1097Int  operator+(const C1097Int& o)const
	{
		return C1097Int(((long long)m_iData + o.m_iData) % MOD);
	}
	C1097Int& operator+=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData + o.m_iData) % MOD;
		return *this;
	}
	C1097Int& operator-=(const C1097Int& o)
	{
		m_iData = (m_iData + MOD - o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator-(const C1097Int& o)
	{
		return C1097Int((m_iData + MOD - o.m_iData) % MOD);
	}
	C1097Int  operator*(const C1097Int& o)const
	{
		return((long long)m_iData * o.m_iData) % MOD;
	}
	C1097Int& operator*=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData * o.m_iData) % MOD;
		return *this;
	}
	bool operator<(const C1097Int& o)const
	{
		return m_iData < o.m_iData;
	}
	C1097Int pow(long long n)const
	{
		C1097Int iRet = 1, iCur = *this;
		while (n)
		{
			if (n & 1)
			{
				iRet *= iCur;
			}
			iCur *= iCur;
			n >>= 1;
		}
		return iRet;
	}
	C1097Int PowNegative1()const
	{
		return pow(MOD - 2);
	}
	int ToInt()const
	{
		return m_iData;
	}
private:
	int m_iData = 0;;
};

核心代码

class Solution {
public:
	int numDecodings(string s) {
		vector<C1097Int<>> pre(27);
		if ('*' == s[0])
		{
			for (int i = 1; i <= 9; i++)
			{
				pre[i] += 1;
			}
		}
		else
		{
			pre[s[0] - '0'] += 1;
		}
		for (int i = 1; i < s.length(); i++)
		{
			vector<C1097Int<>> dp(27);
			const auto total = std::accumulate(pre.begin()+1, pre.end(), C1097Int<>());			
			auto Add = [&dp, &pre,&total](const char& ch)
			{
				if ((ch >= '1') && (ch <= '9'))
				{
					dp[ch - '0'] += total;//新字符
				}
				dp[ch - '0' + 10] += pre[1];
				if ((ch >= '0') && (ch <= '6'))
				{
					dp[ch - '0' + 20] += pre[2];
				}
			};
			if ('*' == s[i])
			{
				for (char ch = '1'; ch <= '9'; ch++)
				{
					Add(ch);
				}
			}
			else
			{
				Add(s[i]);
			}
			pre.swap(dp);
		}
		return std::accumulate(pre.begin() + 1, pre.end(), C1097Int<>()).ToInt();
	}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}
}


int main()
{
	string s;
	{
		Solution sln;
		s = "0";
		auto res = sln.numDecodings(s);
		Assert(0, res);
	}
	{
		Solution sln;
		s = "*";
		auto res = sln.numDecodings(s);
		Assert(9, res);
	}
	{
		Solution sln;
		s = "1*";
		auto res = sln.numDecodings(s);
		Assert(18, res);
	}
	{
		Solution sln;
		s = "2*";
		auto res = sln.numDecodings(s);
		Assert(15, res);
	}

	{
		Solution sln;
		s = "*********";
		auto res = sln.numDecodings(s);
		Assert(291868912, res);
	}
	
	{
		Solution sln;
		s = "**3*******";
		auto res = sln.numDecodings(s);
		Assert(351940699, res);
	}

	{
		Solution sln;
		s = "*1*3***4**6**";
		auto res = sln.numDecodings(s);
		Assert(632929394, res);
	}

	{
		Solution sln;
		s = "*1*3***4**6*7*";
		auto res = sln.numDecodings(s);
		Assert(468371306, res);
	}
}

改进

修改了三处:
一,初始化简洁。
二,total 包括dp[0]。
三,i从0开始。
代码更简洁。

class Solution {
public:
	int numDecodings(string s) {
		vector<C1097Int<>> pre(27);
		pre[0] = 1;
		for (int i = 0; i < s.length(); i++)
		{
			vector<C1097Int<>> dp(27);
			const auto total = std::accumulate(pre.begin(), pre.end(), C1097Int<>());			
			auto Add = [&dp, &pre,&total](const char& ch)
			{
				if ((ch >= '1') && (ch <= '9'))
				{
					dp[ch - '0'] += total;//新字符
				}
				dp[ch - '0' + 10] += pre[1];
				if ((ch >= '0') && (ch <= '6'))
				{
					dp[ch - '0' + 20] += pre[2];
				}
			};
			if ('*' == s[i])
			{
				for (char ch = '1'; ch <= '9'; ch++)
				{
					Add(ch);
				}
			}
			else
			{
				Add(s[i]);
			}
			pre.swap(dp);
		}
		return std::accumulate(pre.begin() + 1, pre.end(), C1097Int<>()).ToInt();
	}
};

2023年第一版

 class CBigMath
 {
 public:
	 static void AddAssignment(int* dst, const int& iSrc)
	 {
		 *dst = (*dst + iSrc) % s_iMod;
	 }

	 static void AddAssignment(int* dst, const int& iSrc, const int& iSrc1)
	 {
		 *dst = (*dst + iSrc) % s_iMod;
		 *dst = (*dst + iSrc1) % s_iMod;
	 }

	 static void AddAssignment(int* dst, const int& iSrc, const int& iSrc1, const int& iSrc2)
	 {
		 *dst = (*dst + iSrc) % s_iMod;
		 *dst = (*dst + iSrc1) % s_iMod;
		 *dst = (*dst + iSrc2) % s_iMod;
	 }

	 static void SubAssignment(int* dst, const int& iSrc)
	 {
		 *dst = (s_iMod - iSrc + *dst) % s_iMod;
	 }
	 static int Add(const int& iAdd1, const int& iAdd2)
	 {
		 return (iAdd1 + iAdd2) % s_iMod;
	 }
	 static int Mul(const int& i1, const int& i2)
	 {
		 return((long long)i1 *i2) % s_iMod;
	 }
 private:
	 static const int s_iMod = 1000000007;
 };
 
  class Solution {
 public:
	 int numDecodings(string s) {
		 vector<int> preDp(27);
		 if ('*' == s[0])
		 {
			 for (int i = 1; i < 10; i++)
			 {
				 preDp[i] = 1;
			 }
		 }
		 else if ('0' != s[0])
		 {
			 preDp[s[0] - '0'] = 1;
		 }

		 for (int i = 1; i < s.length(); i++)
		 {
			 vector<int> dp(27);
			 if ('*' == s[i])
			 {
				 for (int j = 1; j < 10; j++)
				 {
					 Test(dp, preDp, j);
				 }
			 }
			 else
			 {
				 Test(dp, preDp, s[i] - '0');
			 }
			 preDp.swap(dp);
		 }
		 int iRet = 0;
		 for (const auto& p : preDp)
		 {
			 CBigMath::AddAssignment(&iRet, p);
		 }
		 return iRet;
	 }
	 void Test(vector<int>& dp, const vector<int>& preDp, int iNum)
	 {
		 if (0 != iNum)
		 {
			 for (int i = 0; i < preDp.size(); i++)
			 {
				 CBigMath::AddAssignment(&dp[iNum], preDp[i]);
			 }
		 }
		 CBigMath::AddAssignment(&dp[10 + iNum], preDp[1]);
		 if (iNum <= 6)
		 {
			 CBigMath::AddAssignment(&dp[20 + iNum], preDp[2]);
		 }
	 }
 };

2023年1月第2版

class CBigMath
{
public:
static void AddAssignment(int* dst, const int& iSrc)
{
*dst = (dst + iSrc) % s_iMod;
}
static void AddAssignment(int
dst, const int& iSrc, const int& iSrc1)
{
*dst = (*dst + iSrc) % s_iMod;
*dst = (dst + iSrc1) % s_iMod;
}
static void AddAssignment(int
dst, const int& iSrc, const int& iSrc1, const int& iSrc2)
{
*dst = (*dst + iSrc) % s_iMod;
*dst = (*dst + iSrc1) % s_iMod;
*dst = (dst + iSrc2) % s_iMod;
}
static void SubAssignment(int
dst, const int& iSrc)
{
*dst = (s_iMod - iSrc + *dst) % s_iMod;
}
static int Add(const int& iAdd1, const int& iAdd2)
{
return (iAdd1 + iAdd2) % s_iMod;
}
static int Mul(const int& i1, const int& i2)
{
return((long long)i1 *i2) % s_iMod;
}
private:
static const int s_iMod = 1000000007;
};

class Solution {
public:
int numDecodings(string s) {
vector preDp(27);
if (‘’ == s[0])
{
for (int i = 1; i < 10; i++)
{
preDp[i] = 1;
}
}
else if (‘0’ != s[0])
{
preDp[s[0] - ‘0’] = 1;
}
for (int i = 1; i < s.length(); i++)
{
vector dp(27);
if ('
’ == s[i])
{
int iTotal = GetTotal(preDp);
for (int j = 1; j < 10; j++)
{
Test(dp, preDp, iTotal,j);
}
}
else
{
int iTotal = GetTotal(preDp);
Test(dp, preDp, iTotal,s[i] - ‘0’);
}
preDp.swap(dp);
}
return GetTotal(preDp);
}
int GetTotal(const vector& preDp)
{
int iRet = 0;
for (const auto& p : preDp)
{
CBigMath::AddAssignment(&iRet, p);
}
return iRet;
}
void Test(vector& dp, const vector& preDp,int iTotal, int iNum)
{
if (0 != iNum)
{
CBigMath::AddAssignment(&dp[iNum], iTotal);
}
CBigMath::AddAssignment(&dp[10 + iNum], preDp[1]);
if (iNum <= 6)
{
CBigMath::AddAssignment(&dp[20 + iNum], preDp[2]);
}
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1391040.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【VTKExamples::PolyData】第四期 DijkstraGraphGeodesicPath

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 前言 本文分享VTK样例DijkstraGraphGeodesicPath,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^)ノ~YO 1. DijkstraGraphGeodesicPath /…

element plus 可选择树形组件(el-tree) 怎样一键展开/收起?实现方法详解

实现代码&#xff1a; 按钮&#xff1a; <el-button click"takeall" style"height: 24px">{{zhanstatus % 2 ! 0 ? "收起所有" : "展开所有"}} </el-button> 组件&#xff1a; <el-form-item label"可选择菜单…

Kafka系列(四)

本文接kafka三&#xff0c;代码实践kafkaStream的应用&#xff0c;用来完成流式计算。 kafkastream 关于流式计算也就是实时处理&#xff0c;无时间概念边界的处理一些数据。想要更有性价比地和java程序进行结合&#xff0c;因此了解了kafka。但是本人阅读了kafka地官网&#…

32单片机RTC时间接续,掉电时间保存

1、实现思路 前提&#xff1a;首先要实现RTC掉电之后时间还能继续走&#xff0c;RTC电池是必要的 说明&#xff1a;设备第一次启动需要初始化配置RTC&#xff0c;但当二次启动再重新配置RTC会导致RTC计数器置零&#xff0c;所以传统的程序流程是不行的&#xff0c;我们需要知…

苹果最新系统iOS 17的调试和适配方法 - Xcode 14.3.1 真机调试指南

最近苹果发布了iOS 17作为其最新操作系统版本&#xff0c;作为开发者&#xff0c;你可能需要了解如何在Xcode 14.3.1中进行真机调试和适配。本文将为你详细介绍步骤和注意事项。 I. 检查Xcode版本 在开始之前&#xff0c;确保你已经安装了Xcode 14.3.1或更高版本。你可以在Xco…

计算机网络(超详解!) 第二节 数据链路层(上)

1.数据链路层使用的信道 数据链路层使用的信道主要有以下两种类型&#xff1a; 1.点对点信道&#xff1a;这种信道使用一对一的点对点通信方式。 2.广播信道&#xff1a;这种信道使用一对多的广播通信方式&#xff0c;因此过程比较复杂。广播信道上连接的主机很多&#xff0…

学习记录-自动驾驶与机器人中的SLAM技术

以下所有内容均为高翔大神所注的《自动驾驶与机器人中的SLAM技术》中的内容 融合导航 1. EKF和优化的关系 2. 组合导航eskf中的预测部分&#xff0c;主要是F矩阵的构建 template <typename S> bool ESKF<S>::Predict(const IMU& imu) {assert(imu.timestamp…

HCIA——10实验:跨路由转发。静态路由、负载均衡、缺省路由、手工汇总、环回接口。空接口与路由黑洞、浮动静态。

学习目标&#xff1a; 跨路由转发、负载均衡、环回接口、手工汇总、缺省路由、空接口与路由黑洞、浮动静态 学习内容&#xff1a; 跨路由转发静态路由、负载均衡、缺省路由、手工汇总。环回接口空接口与路由黑洞、浮动静态 目录 学习目标&#xff1a; 学习内容&#xff1a…

imgaug库指南(27):从入门到精通的【图像增强】之旅

引言 在深度学习和计算机视觉的世界里&#xff0c;数据是模型训练的基石&#xff0c;其质量与数量直接影响着模型的性能。然而&#xff0c;获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此&#xff0c;数据增强技术应运而生&#xff0c;成为了解决这一问题的…

23/76-LeNet

LeNet 早期成功的神经网络。 先使用卷积层来学习图片空间信息。 然后使用全连接层转换到类别空间。 #In[]LeNet,上世纪80年代的产物,最初为了手写识别设计from d2l import torch as d2l import torch from torch import nn from torch.nn.modules.loss import CrossEntropyLos…

Git中,版本库和远程库有什么区别

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a;每天一个知识点 ✨特色专栏&#xff1a…

【jupyter添加虚拟环境内核(pytorch、tensorflow)- 实操可行】

jupyter添加虚拟环境内核&#xff08;pytorch、tensorflow&#xff09;- 实操可行 1、查看当前状态(winR&#xff0c;cmd进入之后)2、激活虚拟环境并进入3、安装ipykernel5、完整步骤代码总结6、进入jupyter 添加pytorch、tensorflow内核操作相同&#xff0c;以下内容默认已经安…

IP定位技术在网络安全行业的探索

随着互联网的普及和深入生活&#xff0c;网络安全问题日益受到人们的关注。作为网络安全领域的重要技术&#xff0c;IP定位技术正逐渐成为行业研究的热点。本文将深入探讨IP定位技术在网络安全行业的应用和探索。 一、IP定位技术的概述 IP定位技术是通过IP地址来确定设备地理位…

muduo网络库剖析——通道Channel类

muduo网络库剖析——通道Channel类 前情从muduo到my_muduo 概要事件种类channel 框架与细节成员函数细节实现使用方法 源码结尾 前情 从muduo到my_muduo 作为一个宏大的、功能健全的muduo库&#xff0c;考虑的肯定是众多情况是否可以高效满足&#xff1b;而作为学习者&#x…

RK3399平台入门到精通系列讲解(硬件篇)常用的硬件工具介绍

🚀返回总目录 文章目录 一、万⽤表1.1、测量交流和直流电压1.2、测量交流和直流电流二、逻辑分析仪三、示波器作为⼀名嵌⼊式开发⼯程师,是有必要对各类常⽤的硬件⼯具有⼀定了解的,你可以不懂怎么使⽤它,但你必须知道它是什么,有什么⽤,在什么时候可以⽤得上。 一、万…

自动驾驶中的坐标系

自动驾驶中的坐标系 自动驾驶中的坐标系 0.引言1.相机传感器坐标系2.激光雷达坐标系3.车体坐标系4.世界坐标系4.1.地理坐标系4.2.投影坐标系4.2.1.投影方式4.2.2.墨卡托(Mercator)投影4.2.3.高斯-克吕格(Gauss-Kruger)投影4.2.4.通用横轴墨卡托UTM&#xff08;UniversalTransve…

Linux命令之用户账户管理whoami,useradd,passwd,chage,usermod,userdel的使用

1、查看当前用户账户 2、切换用户为root用户 3、新建用户user1&#xff0c;给用户user1设置密码为password123 4、新建用户user2&#xff0c;UID为510&#xff0c;指定其所属的私有组为group1&#xff08;group1组的标识符为500&#xff09;&#xff0c;用户的主目录为/home/us…

人类的逻辑常常是演绎、归纳和溯因推理混合

人类的逻辑推理往往是一种综合运用不同推理方式的能力。 演绎推理是从已知的前提出发&#xff0c;推断出必然的结论。通过逻辑规则的应用&#xff0c;人们可以从一些已知的事实或前提出发&#xff0c;得出一个必然成立的结论。演绎推理是一种严密的推理方式&#xff0c;它能够保…

网络安全笔记-SQL注入

文章目录 前言一、数据库1、Information_schema2、相关函数 二、SQL注入分类1、联合查询注入&#xff08;UNION query SQL injection&#xff09;语法 2、报错注入&#xff08;Error-based SQL injection&#xff09;报错注入分类报错函数报错注入原理 3、盲注布尔型盲注&#…

ROS第 2 课 ROS 系统安装和环境搭建

文章目录 方法一&#xff1a;一键安装&#xff08;推荐&#xff09;方法二&#xff1a;逐步安装&#xff08;常规安装方式&#xff09;1.版本选择2.检查 Ubuntu 的软件和更新源3.设置 ROS 的下载源3.1 设置国内下载源3.2 设置公匙3.3 更新软件包 4. 安装 ROS5. 设置环境变量6. …