分布式搜索引擎ElasticSearch——基础

news2024/11/16 15:29:34

分布式搜索引擎ElasticSearch——基础

文章目录

  • 分布式搜索引擎ElasticSearch——基础
    • 初识elasticsearch
      • 什么是elasticsearch
      • elasticsearch的发展
      • 正向索引和倒排索引
      • 安装elasticsearch,kibana
        • 部署单点es
          • 创建网络
          • 加载镜像
          • 运行
        • 部署kibana
          • 部署
          • DevTools
      • 安装IK分词器
        • 在线安装ik插件(较慢)
        • 离线安装ik插件(推荐)
          • 1)查看数据卷目录
          • 4)重启容器
          • 5)测试:
        • 扩展词词典
        • 停用词词典
      • 部署es集群
    • 索引库操作
      • mapping属性
      • 创建索引库
      • 查询,删除索引库
      • 修改索引库——添加字段
    • 文档操作
      • 添加文档
      • 查看、删除文档
      • 修改文档
      • 文档操作——动态映射
    • RestClient操作索引库
    • RestClient操作文档
      • 利用JavaRestClient批量导入酒店数据到ES

在这里插入图片描述

初识elasticsearch

在这里插入图片描述

什么是elasticsearch

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

elasticsearch的发展

在这里插入图片描述

https://lucene.apache.org/
在这里插入图片描述
https://www.elastic.co/cn/
在这里插入图片描述
在这里插入图片描述

正向索引和倒排索引

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

安装elasticsearch,kibana

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
https://github.com/medcl/elasticsearch-analysis-ik

部署单点es
创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net
加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。网速没问题的话,直接去pull也没问题只要记得指定版本为7.12.1即可(学习教学方便)

课前资料提供了镜像的tar包:

在这里插入图片描述
大家将其上传到虚拟机中,然后运行命令加载即可:

# 导入数据
docker load -i es.tar

同理还有kibana的tar包也需要这样做。同理kibana也可以直接去pull

运行

运行docker命令,部署单点es:

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:

在这里插入图片描述

部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

在这里插入图片描述

此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果

DevTools

kibana中提供了一个DevTools界面:
在这里插入图片描述

安装IK分词器

在线安装ik插件(较慢)
# 进入容器内部
docker exec -it es /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch
离线安装ik插件(推荐)
1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[
    {
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

在这里插入图片描述

也就是/var/lib/docker/volumes/es-plugins/_data
在这里插入图片描述

4)重启容器
# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es
5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "黑马程序员学习java太棒了"
}

结果:

{
  "tokens" : [
    {
      "token" : "黑马",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "程序",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 5
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "太棒",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 7
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 8
    }
  ]
}
扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:
在这里插入图片描述

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

传智播客
奥力给

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

在这里插入图片描述

日志中已经成功加载ext.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "传智播客Java就业超过90%,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词

停用词

4)重启elasticsearch

# 重启服务
docker restart elasticsearch
docker restart kibana

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "传智播客Java就业率超过95%,停用词都点赞,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

部署es集群

部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data02:/usr/share/elasticsearch/data
    networks:
      - elastic
  es03:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic

volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

Run docker-compose to bring up the cluster:

docker-compose up

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

索引库操作

在这里插入图片描述

mapping属性

在这里插入图片描述
在这里插入图片描述

创建索引库

在这里插入图片描述

查询,删除索引库

在这里插入图片描述

修改索引库——添加字段

在这里插入图片描述

在这里插入图片描述

文档操作

在这里插入图片描述

添加文档

在这里插入图片描述

查看、删除文档

在这里插入图片描述

修改文档

全量修改如果传的id不存在,就直接成为新增了。
增量修改就是局部修改。
在这里插入图片描述

在这里插入图片描述

文档操作——动态映射

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

RestClient操作索引库

在这里插入图片描述
https://www.elastic.co/guide/en/elasticsearch/client/index.html

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

public class HotelIndexTest {
    private RestHighLevelClient client;

    @Test
    void testInit(){
        System.out.println(client);
    }

//    创建索引库
    @Test
    void createHotelIndex() throws IOException {
        // 1. 创建request对象
        CreateIndexRequest request = new CreateIndexRequest("hotel");
        // 2. 准备请求的参数:DSL语句
        request.source(MAPPING_TEMPLATE, XContentType.JSON);
        // 3. 发送请求
        client.indices().create(request, RequestOptions.DEFAULT);
    }

//    删除索引库
    @Test
    void testDDeleteHotelIndex() throws IOException {
        // 1. 创建Request对象
        DeleteIndexRequest request = new DeleteIndexRequest("hotel");
        // 2. 发送请求
        client.indices().delete(request,RequestOptions.DEFAULT);
    }


//    判断是否存在索引库
    @Test
    void testExistsHotelIndex() throws IOException {
        // 1. 创建Request对象
        GetIndexRequest request = new GetIndexRequest("hotel");
        // 2. 发送请求
        boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
        // 3. 输出
        System.out.println(exists ? "索引库已经存在": "索引库不存在!");
    }



    @BeforeEach
    void setUp(){
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.10.88:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\": {\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"{all}\"\n" +
            "      },\n" +
            "      \"address\": {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\": {\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\": {\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\": {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"{all}\"\n" +
            "      },\n" +
            "      \"city\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"starName\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\": {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"{all}\"\n" +
            "      },\n" +
            "      \"location\": {\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\": {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\": {\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "    \n" +
            "  }\n" +
            "}";
}

在这里插入图片描述

RestClient操作文档

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

@SpringBootTest
public class HotelDocumentTest {
    private RestHighLevelClient client;

    @Autowired
    private IHotelService hotelService;
//    添加酒店数据到索引库
    @Test
    void testAddDocument() throws IOException {
        // 根据id查询酒店数据
        Hotel hotel = hotelService.getById(61083L);
        // 转换为文档类型
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 1. 准备Request对象
        IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());

        // 2. 准备json文档
        request.source(JSON.toJSONString(hotelDoc),XContentType.JSON);
        // 3. 发送文档
        client.index(request,RequestOptions.DEFAULT);
    }

    // 根据id查询酒店数据
    @Test
    void testGetDocumentById() throws IOException {
        // 1. 准备Request
        GetRequest request = new GetRequest("hotel", "61083");
        // 2. 发送请求,得到响应
        GetResponse response = client.get(request, RequestOptions.DEFAULT);
        // 3. 解析响应结果
        String json = response.getSourceAsString();
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println(hotelDoc);
    }

    // 根据id修改酒店数据
    @Test
    void testUpdateDocument() throws IOException {
        // 1. 准备request
        UpdateRequest request = new UpdateRequest("hotel", "61083");
        // 2. 准备请求参数
        request.doc(
                "price", "998",
                "starName", "四钻"
        );
        // 3. 发送请求
        client.update(request, RequestOptions.DEFAULT);
    }

    // 根据id删除文档数据
    @Test
    void testDeleteDocument() throws IOException {
        // 1. 准备request
        DeleteRequest request = new DeleteRequest("hotel", "61083");
        // 2. 发送请求
        client.delete(request, RequestOptions.DEFAULT);
    }



    @BeforeEach
    void setUp(){
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.10.88:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

在这里插入图片描述

利用JavaRestClient批量导入酒店数据到ES

在这里插入图片描述

    // 批量添加
    @Test
    void testBulkRequest() throws IOException {
        // 批量查询酒店数据
        List<Hotel> hotels = hotelService.list();
        // 1. 创建Request
        BulkRequest request = new BulkRequest();
        // 2.  转杯参数,添加多个新增的Request
        for (Hotel hotel : hotels) {
            // 转换为文档类型HotelDoc
            HotelDoc hotelDoc = new HotelDoc(hotel);
            request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc),XContentType.JSON));
        }
        // 3. 发送请求
        client.bulk(request,  RequestOptions.DEFAULT);
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1390797.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOv5改进系列(26)——添加RFAConv注意力卷积(感受野注意力卷积运算)

【YOLOv5改进系列】前期回顾&#xff1a; YOLOv5改进系列&#xff08;0&#xff09;——重要性能指标与训练结果评价及分析 YOLOv5改进系列&#xff08;1&#xff09;——添加SE注意力机制 YOLOv5改进系列&#xff08;2&#xff09;——添加CBAM注意力机制 YOLOv5改进系列&…

Docker-Compose构建lnmp

目录 实验前准备安装composeNginx准备工作目录准备Dockerfile脚本准备nginx.conf Mysql准备工作目录编写Dockerfile脚本准备my.cnf PHP准备工作目录准备相关文件 编写docker-compose.yml配置文件目录结构启动测试Mysql授权测试 问题Mysql容器无权访问问题浏览器访问file not fo…

JVM实战(20)——jstat实战(1)

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…

React入门 - 07(说一说 JSX 中的语法细节)

本章内容 目录 1、js 表达式2、列表渲染3、条件渲染4、className5、jsx 中的样式处理6、dangeouslySetInnerHTML7、htmlFor8、使用 jsx 的注意事项 上一节内容我们完成了一个简单的TodoList案例。到现在为止我们已经知道怎么在 JSX中使用 “js 表达式”和”列表渲染“了&#…

el-date-picker组件设置时间范围限制

需求&#xff1a; 如图所示&#xff0c;下图为新增的一个弹层页面&#xff0c;同时有个需求&#xff0c;日期选择需要限制一个月的时间范围&#xff08;一月默认为30天&#xff09;&#xff1a; 查看官方文档我们需要主要使用到如下表格的一些东西&#xff1a; 参数说明类型可…

C语言经典算法之堆排序算法

目录 前言 建议 简介 A.建堆&#xff1a; B.排序 一、代码实现 二、时空复杂度 A.时间复杂度 B.空间复杂度 三、稳定性 四、现实中的应用 前言 建议 1.学习算法最重要的是理解算法的每一步&#xff0c;而不是记住算法。 2.建议读者学习算法的时候&#xff0c;自己…

深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning

偏理论&#xff0c;假设情况不易发生 摘要 多智能体强化学习的换道策略&#xff0c;不同的智能体在每一轮学习后交换策略&#xff0c;达到零和博弈。 和谐驾驶仅依赖于单个车辆有限的感知结果来平衡整体和个体效率&#xff0c;奖励机制结合个人效率和整体效率的和谐。 Ⅰ. 简…

浪花 - 搜索标签前后端联调

前传&#xff1a;浪花 - 根据标签搜索用户-CSDN博客 目录 一、完善后端搜索标签接口 二、前后端搜索标签接口的对接 1. 使用 Axios 发送请求 2. 解决跨域问题 3. Axios 请求传参序列化 4. 接收后端响应数据 5. 处理后端响应数据格式 6. 搜索结果为空的页面展示 附&am…

Linux网络文件共享服务1(基于FTP文件传输协议)

目录 一、了解FTP 1、FTP的相关概念 2、FTP的两种模式及工作原理 2.1 主动模式 2.2 被动模式 3、vsftpd 软件介绍 3.1 基础操作 4、vsftpd服务常见配置 4.1 修改默认命令端口 4.2 主动模式端口 4.3 被动模式端口 4.4 使用当地时间 4.5 匿名用户登录 4.6 匿名用户上…

初识XSS漏洞

目录 一、XSS的原理和分类 二、Xss漏洞分类 1. 反射性xss 简单的演示&#xff1a; 2.基于DOM的XSS 简单的演示&#xff1a; 3.存储型XSS ​编辑简单的演示 4、self xss 三、XSS漏洞的危害 四、XSS漏洞的验证 五、XSS漏洞的黑盒测试 六、XSS漏洞的白盒测试 七、XS…

135基于matlab的经验小波变换(EWT)的自适应信号处理方法

基于matlab的经验小波变换(EWT)的自适应信号处理方法.其核心思想是通过对信号的Fourier谱进行自适应划分,建立合适的小波滤波器组来提取信号不同的成分&#xff0c;EWT1D和EWT2D方法。程序已调通&#xff0c;可直接运行。 135matlab信号处理EWT (xiaohongshu.com)

VMware虚拟机忘记密码操作方法

下面已openEuler虚拟机为例&#xff1a; 1、点击重启时&#xff0c;一直按esc&#xff08;鼠标点击一下&#xff0c;确保鼠标在你的虚拟机里面&#xff09; 2、一直到进入到如下页面按e键&#xff08;可能会略有不同&#xff09; 3、按e键后跳转到如下页面 4、在该页面输入 in…

C++ OJ基础

C OJ基础 在学校学习C程序设计基础课程的OJ题目 缺少第二十题 这里写目录标题 C OJ基础习题练习(一)打印图形习题练习(二)数据的输入输出习题练习(三)函数重载习题练习(四)设计矩形类习题练习(五)定义Tree类习题练习(六)完善职工工资类Salary的设计习题练习(七)设计矩形类recta…

CSS样式学习-基本用法

html超文本传输标签&#xff0c;属性等权重 outline 标签轮廓 <input type"text"> <textarea cols"30" rows"10"></textarea> outline: none; 表示无轮廓 &#xff08;开发时用的比较多&#xff09; CSS 轮廓&#xff…

机器学习-协同过滤

1、协同过滤要解决的问题 协同过滤算法主要用于推荐系统&#xff0c;推荐系统是信息过载所采用的措施&#xff0c;面对海量的数据信息&#xff0c;从中快速推荐出符合用户特点的物品。一些人的“选择恐惧症”、没有明确需求的人。 解决如何从大量信息中找到自己感兴趣的信息。…

【Linux】Linux系统编程——ls命令

【Linux】Linux 系统编程——ls 命令 1.命令概述 ls 命令是 Linux 和其他类 Unix 操作系统中最常用的命令之一。ls 命令是英文单词 list 的缩写&#xff0c;正如 list 的意思&#xff0c;ls 命令用于列出文件系统中的文件和目录。使用此命令&#xff0c;用户可以查看目录中的…

redis之单线程和多线程

目录 1、redis的发展史 2、redis为什么选择单线程&#xff1f; 3、主线程和Io线程是怎么协作完成请求处理的&#xff1f; 4、IO多路复用 5、开启redis多线程 1、redis的发展史 Redis4.0之前是用的单线程&#xff0c;4.0以后逐渐支持多线程 Redis4.0之前一直采用单线程的主…

C++学习笔记——用C++实现树(区别于C)

树是一种非常重要的数据结构&#xff0c;它在计算机科学中的应用非常广泛。在本篇博客中&#xff0c;我们将介绍树的基本概念和C中如何实现树。 目录 一、树的基本概念 2.C中实现树 2.1创建一个树的实例&#xff0c;并向其添加节点 2.2三种遍历方式的实现代码 3.与C语言相…

以前获得的一枚勋章

以前我上大学期间&#xff0c;每周都去合肥南七里买一份广州出版的《足球报》。

数据结构排序二叉树(下)

哎,调了几天深度学习模型,今天来更新排序二叉树 文章目录 前言 一、排序二叉树的结构定义 二、在排序二叉树添加数据 三、定义创建排序二叉树函数 四、查找一棵二叉排序树中的结点x的所在层数 五、删除二叉排序树中T关键字x的节点 六、查找二叉排序树中的所有小于key的关…