Elasticsearch:管理和排除 Elasticsearch 内存故障

news2024/11/16 15:24:25

作者:来自 Elastic Stef Nestor

随着 Elastic Cloud 提供可观察性、安全性和搜索等解决方案,我们将使用 Elastic Cloud 的用户范围从完整的运营团队扩大到包括数据工程师、安全团队和顾问。作为 Elastic 支持代表,我很乐意与各种各样的用户和用例互动。

随着受众的扩大,我看到了更多关于管理资源分配的问题,特别是对分配健康状况​​进行故障排除和避免断路器的问题。我明白了!当我开始使用 Elasticsearch 时,我也有同样的问题。这是我第一次接触管理 Java 堆和时间序列数据库分片以及扩展我自己的基础设施。

当我加入 Elastic 时,我喜欢除了文档之外,我们还有博客和教程,这样我就可以快速上手。但随后,我在第一个月努力将我的理论知识与用户通过我的票务队列发送的错误联系起来。最终,我和其他支持代表一样发现,很多报告的错误只是分配问题的症状,同样的七个链接将使用户快速掌握成功管理其资源分配的方法。

作为一名支持代表,我将介绍我们向用户发送的最重要的分配管理理论链接、我们看到的最重要的症状以及我们指导用户更新他们的配置以解决他们的资源分配问题的地方。

理论

作为 Java 应用程序,Elasticsearch 需要从系统的物理内存中分配一些逻辑内存(堆)。这应该最多是物理 RAM 的一半,上限为 32GB。设置更高的堆使用率通常是为了应对昂贵的查询和更大的数据存储。父熔断器(Parent circuit breaker)默认为 95%,但我们建议在持续达到 85% 后扩展资源。

我强烈推荐这些概述文章以获取更多信息:

  • A heap of trouble
  • Heap: Sizing and swapping

配置

Elasticsearch 的默认设置会根据节点角色和总内存自动调整 JVM 堆的大小。但是,你可以根据需要通过以下三种方式直接配置它:

1. 直接在本地 Elasticsearch 文件的 config > jvm.options 文件中进行配置:

## JVM configuration

################################################################
## IMPORTANT: JVM heap size
################################################################

…

# Xms represents the initial size of total heap space
# Xmx represents the maximum size of total heap space

-Xms4g
-Xmx4g

2. 作为 docker-compose 中的 Elasticsearch 环境变量:

version: '2.2'
services:
  es01:
	image: docker.elastic.co/elasticsearch/elasticsearch:7.12.0
	environment:
  	- node.name=es01
  	- cluster.name=es
  	- bootstrap.memory_lock=true
  	- "ES_JAVA_OPTS=-Xms4g -Xmx4g"
  	- discovery.type=single-node
	ulimits:
  	memlock:
    	soft: -1
    	hard: -1
	ports:
  	- 9200:9200

3. 通过我们的 Elastic Cloud Hosted > Deployment > Edit 视图。注意:下拉菜单分配物理内存,大约一半将分配给堆。

故障排除

如果你目前遇到集群性能问题,则最有可能归结为常见原因:

  • 配置问题:主节点规模过小,没有 ILM 策略
  • 容量导致:请求速度/负载过高,重叠的昂贵查询/写入

所有以下 cURL/API 请求都可以在 Elastic Cloud Hosted > Elasticsearch API 控制台中、作为 Elasticsearch API 的 cURL 或在 Kibana > Dev Tools 下进行。

分配健康状况

数据索引存储在子分片中,这些子分片在维护以及搜索/写入请求期间会使用堆内存。分片大小不应超过 50GB。

以上述拥有 8GB 物理内存的两区域 Elastic Cloud 托管示例为例(总共分配两个节点),我们可以用以下命令查看示例:_cat/allocation

GET /_cat/allocation?v=true&h=shards,node
shards node
    41 instance-0000000001
    41 instance-0000000000

以及:_cluster/health。

GET /_cluster/health?filter_path=status,*_shards

{
  "status": "green",
  "unassigned_shards": 0,
  "initializing_shards": 0,
  "active_primary_shards": 41,
  "relocating_shards": 0,
  "active_shards": 82,
  "delayed_unassigned_shards": 0
}

如果任何分片在 active_shards 或 active_primary_shards 之外的报告数 >0,则你已确定了性能问题的原因。

如果报告问题,最常见的情况是 unassigned_shards > 0。如果这些分片是主分片,你的集群将报告为 status:red,如果只有副本,它将报告为 status:yellow。 更多有关这些状态的描述请参考文章 “Elasticsearch 中的一些重要概念: cluster, node, index, document, shards 及 replica”。(这就是为什么在索引上设置副本很重要的原因 —— 如果集群遇到问题,它可以恢复,而不是经历数据丢失。)让我们假设我们有一个带有单个未分配分片的 status:yellow。为了调查,我们将通过 _cat/shards 查看哪个索引分片有问题。

GET _cat/shards?v=true&s=state
index                                 	shard prirep state    	docs   store ip       	node
logs                                  	0 	p  	STARTED     	2  10.1kb 10.42.255.40 instance-0000000001
logs                                  	0 	r  	UNASSIGNED
kibana_sample_data_logs               	0 	p  	STARTED 	14074  10.6mb 10.42.255.40 instance-0000000001
.kibana_1                             	0 	p  	STARTED  	2261   3.8mb 10.42.255.40 instance-0000000001

因此,这将适用于我们的非系统索引日志,这些日志具有未分配的副本分片。让我们通过运行 _cluster/allocation/explain 来查看是什么让它陷入困境。(专业提示:当你升级到我们官方的技术支持时,这正是我们所做的。)

GET _cluster/allocation/explain?pretty&filter_path=index,node_allocation_decisions.node_name,node_allocation_decisions.deciders.*
{ "index": "logs",
  "node_allocation_decisions": [{
      "node_name": "instance-0000000005",
      "deciders": [{
          "decider": "data_tier",
          "decision": "NO",
          "explanation": "node does not match any index setting [index.routing.allocation.include._tier] tier filters [data_hot]"
}]}]}

此错误消息指向 data_hot,它是索引生命周期管理 (index lifecycle management - ILM) 策略的一部分,表明我们的 ILM 策略与我们当前的索引设置不一致。在这种情况下,此错误的原因是设置了热温(hot-warm) ILM 策略而没有指定热温节点。(我需要保证某些事情会失败,所以这是我为大家强制提供的错误示例。有关更多信息,请参阅此示例故障排除视频以获取解决方案演练。)

如果你在没有任何未分配的分片时运行此命令,你将收到 400 错误,表示无法找到任何未分配的分片来解释,因为没有任何错误需要报告。如果你遇到非逻辑原因(例如,临时网络错误,如分配期间节点离开集群),那么你可以使用 Elastic 的方便的 _cluster/reroute。

POST /_cluster/reroute

此请求未经过自定义,将启动一个异步后台进程,尝试分配所有当前状态为:UNASSIGNED 的分片。(不要像我一样,不等它完成就联系开发人员,因为我以为它会立即发生,而且巧合的是,它会及时升级,让他们说没什么问题,因为什么都没有了。)有关更多信息,请参阅此故障排除视频,以监控分配健康状况​​。

熔断器 - Circuit breakers

堆分配达到最大值可能会导致对集群的请求超时或出错,并且经常会导致集群遇到熔断器异常。熔断器错误会导致 elasticsearch.log 事件,例如:

Caused by: org.elasticsearch.common.breaker.CircuitBreakingException: [parent] Data too large, data for [<transport_request>] would be [num/numGB], which is larger than the limit of [num/numGB], usages [request=0/0b, fielddata=num/numKB, in_flight_requests=num/numGB, accounting=num/numGB]
GET /_cat/nodes?v=true&h=name,node*,heap*
# heap = JVM (logical memory reserved for heap)
# ram  = physical memory

name                                node.role heap.current heap.percent heap.max
tiebreaker-0000000002 mv             119.8mb           23    508mb
instance-0000000001   himrst           1.8gb           48    3.9gb
instance-0000000000   himrst           2.8gb           73    3.9gb

或者,如果你之前已启用它,请导航至 Kibana > Stack Monitoring。

如果你已确认自己正在触及内存熔断器,则需要考虑暂时增加堆,以便给自己留出调查的喘息空间。调查根本原因时,请查看集群代理日志或 elasticsearch.log 以查找前面的连续事件。你将寻找:

  • 昂贵的查询,尤其是:
    • 高存储桶聚合
    • 当我发现搜索在根据搜索 size 或 bucket 维度运行查询之前会临时分配堆的某个端口时,我感到非常愚蠢,因此设置 10,000,000 确实让我的运营团队感到心痛。
  • 非优化映射
    • 感到愚蠢的第二个原因是,我认为进行分层报告会比扁平化数据搜索更好(但事实并非如此)。
  • 请求量/速度:通常是批量或异步查询

扩展时间

如果这不是你第一次遇到熔断器,或者你怀疑这将是一个持续存在的问题(例如,持续达到 85%,因此是时候考虑扩展资源了),你需要仔细查看 JVM 内存压力作为长期堆指标。你可以在 Elastic Cloud Hosted > Deployment 中检查这一点。

或者你可以从 _nodes/stats计算它:

GET /_nodes/stats?filter_path=nodes.*.jvm.mem.pools.old

{"nodes": { "node_id": { "jvm": { "mem": { "pools": { "old": {
  "max_in_bytes": 532676608,
  "peak_max_in_bytes": 532676608,
  "peak_used_in_bytes": 104465408,
  "used_in_bytes": 104465408
}}}}}}}

在这里:

JVM Memory Pressure = used_in_bytes / max_in_bytes

这种情况的一个潜在症状是 elasticsearch.log 中的垃圾收集器 (gc) 事件出现频率高且持续时间长:

[timestamp_short_interval_from_last][INFO ][o.e.m.j.JvmGcMonitorService] [node_id] [gc][number] overhead, spent [21s] collecting in the last [40s]

如果你确认了这种情况,则需要考虑扩展集群或减少对集群的需求。你需要调查/考虑:

  • 增加堆资源(堆/节点;节点数)
  • 减少分片(删除不必要/旧数据;使用 ILM 将数据放入热/冷存储中,以便缩小数据;关闭你不关心丢失的数据的副本)

我们随时为你提供帮助

哇哦!从我在 Elastic 支持中看到的情况来看,这是最常见的用户工单的概要:未分配的分片、不平衡的分片堆、熔断器、高垃圾收集和分配错误。所有这些都是核心资源分配管理对话的症状。希望你现在也知道理论和解决步骤。

不过,此时,如果你在解决问题时遇到困难,请随时与我们联系。我们随时为你提供帮助!联系我们:

  • Elastic 讨论
  • Elastic 社区 Slack
  • Elastic 咨询
  • Elastic 培训
  • Elastic 支持

为我们能够以非 Ops(也喜欢 Ops)的身份自行管理 Elastic Stack 的资源分配的能力而欢呼!

原文:Managing and troubleshooting Elasticsearch memory | Elastic Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2241582.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java集合(Collection+Map)

Java集合&#xff08;CollectionMap&#xff09; 为什么要使用集合&#xff1f;泛型 <>集合框架单列集合CollectionCollection遍历方式List&#xff1a;有序、可重复、有索引ArrayListLinkedListVector&#xff08;已经淘汰&#xff0c;不会再用&#xff09; Set&#xf…

大数据如何助力干部选拔的公正性

随着社会的发展和进步&#xff0c;干部选拔成为组织管理中至关重要的一环。传统的选拔方式可能存在主观性、不公平性以及效率低下等问题。大数据技术的应用&#xff0c;为干部选拔提供了更加全面、精准、客观的信息支持&#xff0c;显著提升选拔工作的科学性和公正性。以下是大…

EHOME视频平台EasyCVR多品牌摄像机视频平台监控视频编码H.265与Smart 265的区别?

在视频监控领域&#xff0c;技术的不断进步推动着行业向更高效、更智能的方向发展。特别是在编码技术方面&#xff0c;Smart 265作为一种新型的视频编码技术&#xff0c;相较于传统的H.265&#xff0c;有明显优势。这种技术的优势在EasyCVR视频监控汇聚管理平台中得到了充分的体…

Docker:查看镜像里的文件

目录 背景步骤1、下载所需要的docker镜像2、创建并运行临时容器3、停止并删除临时容器 背景 在开发过程中&#xff0c;为了更好的理解和开发程序&#xff0c;有时需要确认镜像里的文件是否符合预期&#xff0c;这时就需要查看镜像内容 步骤 1、下载所需要的docker镜像 可以使…

【Vitepress报错】Error: [vitepress] 8 dead link(s) found.

原因 VitePress 在编译时&#xff0c;发现 死链接(dead links) 会构建失败&#xff01;具体在哪我也找不到… 解决方案 如图第一行蓝色提示信息&#xff0c;设置 Vitepress 属性 ignoredeadlinks 为 true 可忽略报错。 .vuepress/config.js export default defineConfig(…

HTB:Squashed[WriteUP]

目录 连接至HTB服务器并启动靶机 使用rustscan对靶机TCP端口进行开放扫描 使用nmap对靶机开放端口进行脚本、服务扫描 使用浏览器访问靶机80端口页面 使用showmount列出靶机上的NFS共享 新建一个test用户 使用Kali自带的PHP_REVERSE_SHELL并复制到一号挂载点 尝试使用c…

数据分析-48-时间序列变点检测之在线实时数据的CPD

文章目录 1 时间序列结构1.1 变化点的定义1.2 结构变化的类型1.2.1 水平变化1.2.2 方差变化1.3 变点检测1.3.1 离线数据检测方法1.3.2 实时数据检测方法2 模拟数据2.1 模拟恒定方差数据2.2 模拟变化方差数据3 实时数据CPD3.1 SDAR学习算法3.2 Changefinder模块3.3 恒定方差CPD3…

ThriveX 博客管理系统前后端项目部署教程

前端 前端项目地址&#xff1a;https://github.com/LiuYuYang01/ThriveX-Blog 控制端项目地址&#xff1a;https://github.com/LiuYuYang01/ThriveX-Admin Vercel 首先以 Vercel 进行部署&#xff0c;两种方式部署都是一样的&#xff0c;我们以前端项目进行演示 首先我们先…

Seata源码笔记(三)

Seata源码笔记&#xff08;三&#xff09; RPC部分基础接口AbstractNettyRemotinginit方法send方法&#xff08;仅看sendSync&#xff09;sendSync中的钩子 AbstractNettyRemotingClient 基于incubator-seata-2.x RPC部分 基础接口 AbstractNettyRemoting init方法 主要设置…

Verilog HDL学习笔记

Verilog HDL&#xff08;Hardware Description Language&#xff09;是在一种硬件描述语言&#xff0c;类似于计算机的高级编程设计语言&#xff0c;它具有灵活性高&#xff0c;容易学习和使用等特点&#xff0c;同时Verilog能够通过文本的形式来描述数字系统的硬件结构和功能。…

java-Day07 包装类 异常+自定义异常

包装类 包装类:将基本数据类型包装成引用数据类型 int-Integer char-Character double-Double 其余都大写 包装类好处 1.包装类的存在弥补了基本数据类型的不足。在集合类中&#xff0c;无法将int 、double等类型放进去&#xff0c;因为集合的容器要求元素是Object类型。…

10款高效音频剪辑工具,让声音编辑更上一层楼。

音频剪辑在音频&#xff0c;视频&#xff0c;广告制作&#xff0c;游戏开发&#xff0c;广播等领域中都有广泛的应用。通过音频剪辑&#xff0c;创作者可以通将不同的音频片段进行剪切、拼接、混音等操作&#xff0c;创作出风格各异的音乐作品。如果你也正在为音频创作而努力的…

释放高级功能:Nexusflows Athene-V2-Agent在工具使用和代理用例方面超越 GPT-4o

在不断发展的人工智能领域&#xff0c;Nexusflows 推出了 Athene-V2-Agent 作为其模型系列的强大补充。这种专门的代理模型设计用于在功能调用和代理应用中发挥出色作用&#xff0c;突破了人工智能所能达到的极限。 竞争优势 Athene-V2-Agent 不仅仅是另一种人工智能模型&…

SRP 实现 Cook-Torrance BRDF

写的很乱&#xff01; BRDF&#xff08;Bidirectional Reflectance Distribution Function&#xff09;全称双向反射分布函数。辐射量单位非常多&#xff0c;这里为方便直观理解&#xff0c;会用非常不严谨的光照强度来解释说明。 BRDF光照模型&#xff0c;上反射率公式&#…

SDF,一个从1978年运行至今的公共Unix Shell

关于SDF 最近发现了一个很古老的公共Unix Shell服务器&#xff0c;这个项目从1978年运行至今&#xff0c;如果对操作系统&#xff0c;对Unix感兴趣&#xff0c;可以进去玩一玩体验一下 SDF Public Access UNIX System - Free Shell Account and Shell Access 注册方式 我一…

机器学习基础02_特征工程

目录 一、概念 二、API 三、DictVectorize字典列表特征提取 四、CountVectorize文本特征提取 五、TF-IDF文本1特征词的重要程度特征提取 六、无量纲化预处理 1、MinMaxScaler 归一化 2、StandardScaler 标准化 七、特征降维 1、特征选择 VarianceThreshold 底方差…

[前端面试]javascript

js数据类型 简单数据类型 null undefined string number boolean bigint 任意精度的大整数 symbol 创建唯一且不变的值&#xff0c;常用来表示对象属性的唯一标识 复杂数据类型 object&#xff0c;数组&#xff0c;函数,正则,日期等 区别 存储区别 简单数据类型因为其大小固定…

[DEBUG] 服务器 CORS 已经允许所有源,仍然有 304 的跨域问题

背景 今天有一台服务器到期了&#xff0c;准备把后端迁移到另一台服务器上&#xff0c;结果前端在测试的时候&#xff0c;出现了 304 的跨域问题。 调试过程中出现的问题&#xff0c;包括但不限于&#xff1a; set the request’s mode to ‘no-cors’Redirect is not allow…

深入理解接口测试:实用指南与最佳实践5.0(五)

✨博客主页&#xff1a; https://blog.csdn.net/m0_63815035?typeblog &#x1f497;《博客内容》&#xff1a;.NET、Java.测试开发、Python、Android、Go、Node、Android前端小程序等相关领域知识 &#x1f4e2;博客专栏&#xff1a; https://blog.csdn.net/m0_63815035/cat…

头歌网络安全(11.12)

头歌禁止复制解决 必须先下篡改猴&#xff01;&#xff01;&#xff01;&#xff01; 头歌复制助手 Educoder Copy Helperhttps://scriptcat.org/zh-CN/script-show-page/1860 Java生成验证码 第1关&#xff1a;使用Servlet生成验证码 任务描述 本关任务&#xff1a;使用se…