【占用网络】FlashOcc:快速、易部署的占用预测模型

news2025/1/18 20:27:24

前言

FlashOcc是一个它只需2D卷积就能实现“占用预测模型”,具有快速、节约内存、易部署的特点。

它首先采用2D卷积提取图形信息生成BEV特征。然后通过通道到高度变换,将BEV特征提升到3D空间特征

对于常规的占用预测模型,将3D卷积改为2D卷积,将三维体素特征改为BEV特征。而且不用Transformer注意力算子。

论文地址:FlashOcc: Fast and Memory-Efficient Occupancy Prediction via Channel-to-Height Plugin

代码地址:https://github.com/Yzichen/FlashOCC

一、模型框架

体素特征表示,需要大量内存和计算资源,而且通常会使用一些复杂算子,比如:3D卷积、Deformable Attention、Transformer

FlashOcc认为理想的框架,应该对不同的芯片进行部署友好,同时保持高精度。

采用了一种即插即用的范式,使用2D卷积层来提取特征,并通过一个通道到高度的转换来,提升BEV层的输出到3D空间。

  • FlashOcc首先采用2D卷积提取图形信息生成BEV特征。然后通过通道到高度变换,将BEV特征提升到3D空间特征
  • 对于常规的占用预测模型,将3D卷积改为2D卷积,将三维体素特征改为BEV特征。而且不用Transformer注意力算子。
  • 特点:快速、节约内存、易部署。

FlashOcc的模型框架如下图所示,核心步骤分为7步:

  1. 输入多视角图像数据,比如6个相机组成的,同时输入6张图像。
  2. 经过主干网络,提取图像信息,生成图像特征。
  3. 通过LSS(Lift-splat-shot)思路,将2D图像特征转为BEV特征,形成初步的BEV特征。
  4. 得到初步的BEV特征,可以选择是否使用“时序信息融合模块”。如果使用的,会融合历史的BEV特征信息。如果不用,进入直接下一步。
  5. BEV特征进一步编码,提取特征,形成BEV特征'。
  6. BEV特征'经过占用头的处理,得到BEV特征'';接着,通过通道到高度变换,将BEV特征''提升到3D空间特征
  7. 输出占用预测信息。

其中,通道到高度变换,是指将BEV特征(BxCxWxH),转为3D空间特征(BxC'xZxWxH)。

这里的B是指batch size,C是指BEV的特征通道数量,C'是指3D空间特征通道(类别数量);C = C' x Z,对应通道到高度变换思想。

W,H,Z分别对应三维空间中x,y,z的维度。

它由5个关键模型组成:

  1. 2D图像编码器:这个模块的任务是从由多个摄像头捕获的图像中提取特征。这些特征可能包括物体的形状、大小、颜色等,对于理解图像内容至关重要。
  2. 视图转换模块:该模块负责将2D感知图像特征,转换到鸟瞰视图(BEV)空间表示。
  3. BEV编码器:在完成视图转换后,BEV编码器处理鸟瞰视图中的特征信息。这一步进一步加工特征,使其适应于三维空间分析。
  4. 占用预测模块:这个模块的核心任务是预测每个体素(三维空间中的一个小立方体,类似于二维图像中的像素)是否被占用。这是通过分析前面模块提供的数据来完成的。
  5. 时间融合模块(可选):这个模块不是必须的,但可以用来提高模型的性能。它通过融合历史信息(如之前的观察或预测)来提供更准确的占用预测。

二、细节信息

 1、占用模型改进对比

细节展开,下图是常规的占用预测模型,使用3D体素特征表示,并用到3D卷积和Transformer等算子。

下图是FlashOcc模型,使用BEV特征表示,只用到2D卷积算子。

 

通过BEVDetOcc和UniOcc中组建替换为FlashOcc后,进行实验对比。

替换为FlashOcc后在速度、内存消耗和训练时间方面,都是更优的。

2、Efficient Sub-pixel Paradigm

子像素卷积技术: 这种技术首先在图像超分辨率中被提出,然后通道重排代替上采样提高低分辨率数据的分辨率,与去卷积层相比,成本更低

基于这种方法,提出了通道到高度转换作为一种高效的占用预测方法,直接从平坦的BEV级特征通过通道到高度变换重塑占用空间特征。

在传统的图像超分辨率方法中,一个低分辨率图像会被上采样(即插值)到一个更高的分辨率。然而,这种插值通常是一种线性过程,可能会导致细节的丢失或模糊。子像素卷积采用一种不同的方法来解决这个问题。

在子像素卷积中,网络被训练来学习如何重新排列在低分辨率特征图中的信息,以生成高分辨率的输出。这是通过以下步骤完成的:

  1. 卷积层: 首先,使用卷积层来提取低分辨率图像的特征。

  2. 特征映射扩展: 接着,使用多个卷积滤波器来增加特征映射的数量。例如,如果目标是将图像的分辨率提高2倍,那么就会使用4倍(2x2)的特征映射数量。

  3. 像素重排: 然后,通过一个特殊的重排操作(也称为“像素洗牌”),将这些额外的特征映射转换为高分辨率图像的形式。这个过程实际上是在一个更细粒度的层面上重新排列特征映射,以形成高分辨率输出。

这种方法的优势在于其避免了传统上采样方法可能引入的模糊,同时允许网络学习更加复杂的上采样模式。

在自动驾驶系统中,子像素卷积技术可以用于提高感知模型的分辨率,从而允许车辆更准确地理解其周围的环境,包括路面状况、周围车辆和行人等。

子像素卷积技术被提议用于通过通道到高度变换来实现高效的占用预测,这是一种在BEV级别上工作的技术。

这种方法允许直接从BEV特征中推断出3D结构的高度信息,避免了计算上昂贵的3D卷积操作,从而提高了计算效率并减少了内存消耗。

 3、View Transforme

View Transformer 将摄像头收集的2D图像数据,转换为BEV鸟瞰视图表示。

论文中默认使用LSS方案,它全称是Lift-Splat-Shoot,它先从车辆周围的多个摄像头拍摄到的图像进行特征提取,在特征图中估计出每个点的深度,然后把这些点“提升”到3D空间中。

接着,这些3D信息被放置到一个网格上,最后将这些信息“拍扁”到一个平面视图上,形成BEV特征图。 

  • Lift,是提升的意思,2D到3D特征转换模块,将二维图像特征生成3D特征;即:对每个像素预测深度值,然后结合相机内外参,投影到3D空间中。
  • Splat,是展开的意思,3D到BEV特征编码模块,把3D特征“拍扁”得到BEV特征图;由于一个BEV网格可能对应多个3D点,需要进行融合得到该网格的特征。
  • Shooting,是指在BEV特征图上进行相关任务操作,比如检测、分割、轨迹预测等。

 详细信息,看我这篇博客:【BEV感知 LSS方案】Lift-Splat-Shoot 论文精读与代码实现-CSDN博客

4、训练参数

数据情况 

  • 基准测试:实验使用了Occ3D-nuScenes数据集进行3D占用预测。这个数据集包含了700个训练场景和150个验证场景。
  • 数据集:数据集覆盖了-40m到40m沿X和Y轴的空间范围,以及-1m到5.4m沿Z轴的空间范围。占用标签是使用尺寸为0.4m x 0.4m x 0.4m的体素为17个类别定义的。
  • 数据收集:场景包含了20秒的注释感知数据,以2Hz的频率采集。数据收集车辆装备了一个激光雷达、五个雷达和六个摄像头,使得能够全面地观察车辆的周围环境。
  • 评估指标:评估指标为平均交并比(mIoU)。

训练细节

  • 设计:FlashOcc的设计为即插即用方式,并注重于泛化性和效率。
  • 比较:实验中将FlashOcc与其他主流基于体素的占用预测方法进行了比较,如BEVDetOcc和UniOcc。
  • 训练细节:所有模型都使用AdamW优化器进行训练,并应用了梯度裁剪,学习率为1e-4,总批量大小为64,分布在8个GPU上。
  • 训练周期:BEVDetOcc和UniOcc的总训练周期设置为24,而FBOcc只训练了20个周期。
  • 样本平衡:在所有实验中,没有使用类平衡的分组和采样。

下面表格展示了训练细节信息:

  • “R50*”表示使用了ResNet-50主干网络,“R101”是指ResNet-101,“SwinB”是指Swin Transformer。
  • “FL”是FPN LSS的缩写。
  • “MC”代表多卷积头。
  • MSO指的是指多尺度占用预测头。
  • F-VTM和B-VTM分别表示前向投影和深度感知的后向投影。
  • Stereo4D指的是使用立体声体积来增强LSS的深度预测,而不包括来自上一帧的BEV特征。
  • Mono-align-concat表示使用单目深度预测用于LSS,其中历史帧的bev特征被对齐并沿通道连接。


 

三、设计背景

这不是不是重点,放在后面。占用预测,能解决3D感知中的三个问题:复杂形状缺失、长尾缺陷、无限类别。

  • 复杂形状缺失: 有些物体的形状很复杂,无法描述细节和几何形状。比如,一辆挖掘机,由机械臂和车身组成,用3D目标检测只能框出这是一个矩形体,无法知道那部分是机械臂。
  • 长尾缺陷问题: 在现实世界中,某些物体出现得很少,而另一些则很常见。比如,在路上,普通汽车和卡车很多,但冰淇淋车或救护车就比较少,识别那些不常见的物体就比较难。
  • 无限类别问题:在真实世界中,存在数以万计的不同物体,常规训练任务中,只能识别的有限数量的类别。实际场景中会遇到预定义类之外的目标。

占用预测: 判断周围空间中哪些部分被物体占据,哪些是空的。

为了进行占用预测,一种常见的方法是使用三维体素表示物体和环境。这种方法可以提供非常详细的三维信息,但问题在于它需要大量的内存计算资源

因为体素是以三维网格的形式存在的,所以当细节级别增加时,所需处理的数据量会呈指数级增长。

同时当前大多占用预测模型使用Transformer注意力等复杂算子,阻碍了占用预测部署。

四、实验测试与效果

在Occ3D-nuScenes评估数据集上,进行的3D占用预测性能测试。使用ResNet-101和Swin Transformer-Base两种不同的基础网络进行了评估。

  • FlashOcc在BEVDetOcc和UniOcc框架上进行了评估,并与MonoScene、TPVFormer、OccFormer、CTF-Occ、RenderOcc和PanoOcc等流行方法进行了性能比较。
  • 表格中最后两行,将BEVDetOcc和UniOcc中组建替换为FlashOcc后,FlashOcc在BEVDetOcc上提高了1.3 mIoU,在UniOcc上提高了0.3 mIoU。
  • FlashOcc的实现超过了基于Transformer的PanoOcc方法1.1 mIoU,证明了该方法的性能。

  • 星号(*)表示这些模型在训练前已经在FCOS3D模型上进行了预训练。
  • “FO”是FlashOcc的缩写,而“FO()”表示对应名为“”的模型进行插件替换。

在训练和部署期间,资源消耗分析。FPS是在单个RTX3090上通过tensorrt以fp16精度测试的。

  • “Train. Dur.”是训练持续时间的缩写。
  • “Enc.”、“Occ.”和“Feat”分别代表编码器、占用预测和特征。
  • “GPU·H”表示“1个GPU × 1小时”。

模型预测效果,如下图所示,展示了其精确捕捉复杂形状的能力。

特别是在对行人的体素描述上,比如突出在胸部的体素可以表示行人手持的移动设备,或行李箱部分。

分享完成~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1384833.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

web前端算法简介之字典与哈希表

回顾 栈、队列 : 进、出 栈(Stack): 栈的操作主要包括: 队列(Queue): 队列的操作主要包括: 链表、数组 : 多个元素存储组成的 简述链表:数组&…

阶段十-分布式锁

5.1 节 为什么要使用分布式锁 锁是多线程代码中的概念,只有当多任务访问同一个互斥的共享资源时才需要。如下图: 在我们进行单机应用开发,涉及并发同步的时候,我们往往采用synchronized或者lock的方式来解决多线程间的代码同步问…

分布式任务调度平台XXL-JOB使用(二)

说明:之前总结过在CentOS系统里使用XXL-JOB。但在代码开发阶段,我们有时需要在本地环境测试定时任务代码,本文介绍如何在Windows系统使用XXL-JOB。 下载 (1)下载代码,解压打开 首先,去Github…

权责发生制和收付实现制

目录 一. 权责发生制(应记制)二. 收付实现制 \quad 一. 权责发生制(应记制) 应计制就是应该记入的意思 各项收入和费用的确认应当以“实际发生”(归属期)而不是以款项的实际收付作为记账的基础。 正是有会计期间假设,才有权责发生制和收付实…

逸学Docker【java工程师基础】3.1安装Jenkins

1.下载镜像 docker pull jenkins/jenkins:lts 2.运行容器 docker run -d -u root -p 8080:8080 -p 50000:50000 -v /var/jenkins_home:/var/jenkins_home -v /etc/localtime:/etc/localtime --name jenkins jenkins/jenkins:lts 3.要启动名为 jenkins 的 Docker 容器 docker st…

【软件测试】学习笔记-性能测试的基本方法与应用领域

这篇文章探讨并发用户数、响应时间和系统吞吐量这三个指标之间的关系和约束,性能测试七种常用方法,以及四大应用领域。 由于性能测试是一个很宽泛的话题,所以不同的人对性能测试的看法也不完全一样,同样一种方法可能也会有不同的…

基于STM32的CMT液晶屏控制器驱动程序设计与优化

本文以STM32微控制器为基础,设计并优化了一个用于控制CMT液晶屏的驱动程序。在设计过程中,我们首先介绍了液晶屏的基本工作原理,包括CMT液晶屏的结构和信号传输机制。然后,我们详细讨论了STM32微控制器的GPIO、SPI和DMA模块的特性…

Invalid bound statement (not found)(xml文件创建问题)

这边大致讲一下我的经历,不想看的直接点目录去解决方法 今天照着老师视频学习,中间老师在使用动态SQL时,直接复制了一份,我想这么简单的一个,我直接从网上找内容创建一个好了,但是,但是没想到过…

书生·浦语大模型实战营-学习笔记3

目录 (3)基于 InternLM 和 LangChain 搭建你的知识库1. 大模型开发范式(RAG、Fine-tune)RAG微调 (传统自然语言处理的方法) 2. LangChain简介(RAG开发框架)3. 构建向量数据库4. 搭建知识库助手5. Web Demo部…

word无法插入方程式(方程式反灰)

word无法插入方程式(方程式反灰) 来自实测>插入方程式,反灰用不了>随便存在哪里,右键看属性:>发现真的是doc,得改成docx才可以:>打开原始档案,另存为word文件即可&#…

机器学习 | 多层感知机MLP

机器学习 | 多层感知机MLP 1. 实验目的 自行构造一个多层感知机,完成对某种类型的样本数据的分类(如图像、文本等),也可以对人工自行构造的二维平面超过3类数据点(或者其它标准数据集)进行分类。 2. 实验…

Java安装(可多版本共存)及IIntelliJ IDEA环境搭建汉化(保姆级教程!)

编程如画,我是panda! 这次给大家出一期JAVA安装以及IIntelliJ IDEA的安装教程 IIntelliJ IDEA分为社区版和专业版,两版的教程都有,小伙伴们根据需要自行选择使用 并且我会讲解一台计算机中多个版本JAVA JDK配置安装 前言 我最早接…

书生·浦语大模型实战营笔记(四)

Finetune模型微调 直接使用现成的大语言模型,在某些场景下效果不好,需要根据具体场景进行微调 增量预训练:投喂垂类领域知识 陈述形式,无问答,即只有assistant 指令跟随:system-user-assistant XTuner …

【力扣每日一题】力扣2696删除子串后的字符串最小长度

题目来源 力扣2696删除子串后的字符串最小长度 题目概述 给你一个仅由 大写 英文字符组成的字符串 s 。 你可以对此字符串执行一些操作,在每一步操作中,你可以从 s 中删除 任一个 "AB" 或 "CD" 子字符串。 通过执行操作&#xff…

保卫战小游戏

欢迎来到程序小院 保卫战 玩法&#xff1a;当鬼子进入射击范围内点击鼠标左键射击&#xff0c;不要让鬼子越过炮台哦&#xff0c;快去杀鬼子去吧^^。开始游戏https://www.ormcc.com/play/gameStart/249 html <div style"position: relative;" id"gameDiv&q…

关于浏览器下载的时候出现失败,网络错误

我试过所有浏览器&#xff0c;谷歌&#xff0c;firefox,qq浏览器&#xff0c;还是edge都不好使&#xff0c; 1.看网上说是http debugger的问题&#xff0c;但是我没有找到这个服务项 2.也有说可以通过修改或设置下载路径解决 -------- 我通过下载一个叫xdm的软件&#xff…

网络协议与攻击模拟_05TCP协议

一、传输层知识回顾 &#xff11;、传输层的功能 定义应用层协议数据报文的端口号&#xff0c;流量控制对原始数据进行分段处理 &#xff12;、传输层提供的服务 传输连接服务数据传输服务、流量控制、差错控制、序列控制 &#xff13;、传输层的协议 面向连接的传输协议…

VQGAN:从图像重建到图像生成

本文的目标是作为全新图像生成系统的VQGAN。我已经开始讨论VQGAN的一部分——自编码器&#xff08;VQVAE&#xff1a;矢量量化变分自动编码器&#xff09;。VQVAE的概念是对编码器、解码器和码书的同时训练&#xff0c;该码书适用于所有可能的图像。码书是一组256个嵌入向量。具…

毕业设计:基于python微博舆情分析系统+可视化+Django框架 K-means聚类算法(源码)✅

毕业设计&#xff1a;2023-2024年计算机专业毕业设计选题汇总&#xff08;建议收藏&#xff09; 毕业设计&#xff1a;2023-2024年最新最全计算机专业毕设选题推荐汇总 &#x1f345;感兴趣的可以先收藏起来&#xff0c;点赞、关注不迷路&#xff0c;大家在毕设选题&#xff…

Material Design 进阶(十一)——Chip,ChipGroup,ChipDrawable使用

流式布局标签发展历程 第一阶段&#xff1a;实现这种界面的时候&#xff0c;基本都是自定义一个控件&#xff0c;然后在Java代码中动态的 添加一个个的TextView&#xff0c;还需要计算布局宽度/高度&#xff0c;进行换行等等处理&#xff0c;比较复杂;第二阶段&#xff1a;使用…