【软件测试】学习笔记-性能测试的基本方法与应用领域

news2025/1/19 3:06:15

这篇文章探讨并发用户数、响应时间和系统吞吐量这三个指标之间的关系和约束,性能测试七种常用方法,以及四大应用领域。

由于性能测试是一个很宽泛的话题,所以不同的人对性能测试的看法也不完全一样,同样一种方法可能也会有不同的表述方式。但是,从亲身经历的实践来看,最关键的还是要去理解这些方法的本质和内涵,这样在面对实际问题时才能处变不惊,灵活应对。

虽然关于概念、方法和原理的内容会有些枯燥,但是掌握了这些看似枯燥的内容后,你会发现自己的性能测试知识体系越发完善了。当然,在这些看似枯燥的理论中,通过类比的方式,帮助你理解。

并发用户数、响应时间、系统吞吐量之间的关系

并发用户数、响应时间、系统吞吐量,这三个名词的含义可能就已经让你感觉云里雾里了,因此我会通过一个我们日常生活中的体检为例,再来解释一下它们到底是什么,以及它们之间的关系和约束。

你先来想象这样一个场景:假设你找了一份新工作,入职前需要到体检中心完成入职体检。

在体检中心做检查的过程,通常是先到前台登记个人信息并领取体检单,然后根据体检单的检查项目依次完成不同科室的检查。

假设一共有5个科室,每个科室有3个候诊室,你发现体检中心有很多人都在做检查,那么你一般会选择先做排队人数较少的检查项目,直至完成5个科室的全部检查,最后离开体检中心。

现在,我们做个类比:把整个体检中心想象成一个软件系统,从你进入体检中心到完成全部检查离开所花费的时间就是响应时间,而同时在体检中心参加体检的总人数就是并发用户数,那么系统吞吐量就可以想象成是单位时间内完成体检的人数,比如每小时100人。

如果你到达体检中心的时间比较早,这时人还很少,5个科室都不用排队,那么你就能以最短的时间完成体检。

也就是说,当系统的并发用户数比较少时,响应时间就比较短;但是由于整体的并发用户数少,所以系统的吞吐量也很低。从中,我们可以得出这样的结论:

当系统并发用户数较少时,系统的吞吐量也低,系统处于空闲状态,我们往往把这个阶段称为 “空闲区间”。

如果你到达体检中心时,这里的人已经比较多了,只有部分科室不需要排队,但好在每个科室都有3个候诊室同时进行检查,所以排队时间不会很长,你还是可以在较短的时间完成体检。

也就是说,当系统的并发用户数比较多时,响应时间不会增加太多,因此系统的整体吞吐量也随着并发用户数的变大而变大的。从中,我们可以得出这样的结论:

当系统整体负载并不是很大时,随着系统并发用户数的增长,系统的吞吐量也会随之呈线性增长,我们往往把这个阶段称为 “线性增长区间”。

但是,当体检中心的人越来越多时,每个科室都需要排队,而且每个科室的队伍都很长,你每检查完一个项目都要花很长时间去排队进行下一个检查项目。这样一来,你完成体检的时间就会明显变长。

也就是说,系统的并发用户数达到一定规模时,每个用户的响应时间都会明显变长,所以系统的整体吞吐量并不会继续随着并发用户数的增长而增长。从中,我们可以得出这样的结论:

随着系统并发用户数的进一步增长,系统的处理能力逐渐趋于饱和,因此每个用户的响应时间会逐渐变长。相应地,系统的整体吞吐量并不会随着并发用户数的增长而继续呈线性增长。我们往往把这个阶段称为系统的“拐点”。

最糟糕的情况来了,如果体检中心的人继续增加,你会发现连排队、站人的地方都没有了,所有人都被堵在了一起,候诊室中检查完的人出不来,排队的人又进不去。

也就是说,系统的并发用户数已经突破极限,每个用户的响应时间变得无限长,因此系统的整体吞吐量变成了零。换言之,此时的系统已经被压垮了。从中,我们可以得出这样的结论:

随着系统并发用户数的增长,系统处理能力达到过饱和状态。此时,如果继续增加并发用户数,最终所有用户的响应时间会变得无限长。相应地,系统的整体吞吐量会降为零,系统处于被压垮的状态。我们往往把这个阶段称为“过饱和区间”。

通过这个类比,相信你已经对并发用户数、响应时间和系统吞吐量理解得更透彻了,对于它们之间的关系和约束,也都了然于胸了。

只有理解了这些主要性能指标之间的约束关系,我们才能在实际的性能测试实践中设计有的放矢的性能测试场景。比如,后端性能测试的测试负载,我们一般只会把它设计在“线性增长区间”内;而压力测试的测试负载,我们则会将它设计在系统“拐点”上下,甚至是“过饱和区间”。

那么,接下来让我们一起来看一下性能测试的方法都有哪些。

常用的七种性能测试方法

根据在实际项目中的实践经验,我把常用的性能测试方法分为七大类:后端性能测试(Back-end Performance Test)、前端性能测试(Front-end Performance Test)、代码级性能测试(Code-level Performance Test)、压力测试(Load/Stress Test)、配置测试(Configuration Test)、并发测试(Concurrence Test),以及可靠性测试(Reliability Test)。接下来,我将详细为你介绍每一种测试方法。

第一,后端性能测试

其实,你平时听到的性能测试,大多数情况下指的是后端性能测试,也就是服务器端性能测试。

后端性能测试,是通过性能测试工具模拟大量的并发用户请求,然后获取系统性能的各项指标,并且验证各项指标是否符合预期的性能需求的测试手段。

这里的性能指标,除了包括并发用户数、响应时间和系统吞吐量外,还应该包括各类资源的使用率,比如系统级别的CPU占用率、内存使用率、磁盘I/O和网络I/O等,再比如应用级别以及JVM级别的各类资源使用率指标等。

由于需要模拟的并发用户数,通常在“几百”到“几百万”的数量级,所以你选择的性能测试工具,一定不是基于GUI的,而是要采用基于协议的模拟方式,也就是去模拟用户在GUI操作的过程中实际向后端服务发起的请求。

只有这样才能模拟很高的并发用户数,尽可能地模拟出真实的使用场景,这也是现在所有后端性能测试工具所采用的方法。

根据应用领域的不同,后端性能测试的场景设计主要包括以下两种方式:

  • 基于性能需求目标的测试验证;
  • 探索系统的容量,并验证系统容量的可扩展性

第二,前端性能测试

前端性能测试并没有一个严格的定义和标准。

通常来讲,前端性能关注的是浏览器端的页面渲染时间、资源加载顺序、请求数量、前端缓存使用情况、资源压缩等内容,希望借此找到页面加载过程中比较耗时的操作和资源,然后进行有针对性的优化,最终达到优化终端用户在浏览器端使用体验的目的。

目前,业界普遍采用的前端测试方法,是雅虎(Yahoo)前端团队总结的7大类35条前端优化规则,你可以通过雅虎网站查看这些规则,以及对各规则的详细解读。

我在这里列出了其中几个最典型也是最重要的规则,来帮助你理解前端性能测试优化的关注范围。

  • 减少http请求次数:http请求数量越多,执行过程耗时就越长,所以可以采用合并多个图片到一个图片文件的方法来减少http请求次数,也可以采用将多个脚本文件合并成单一文件的方式减少http请求次数;
  • 减少DNS查询次数:DNS的作用是将URL转化为实际服务器主机IP地址,实现原理是分级查找,查找过程需要花费20~100ms的时间,所以一方面我们要加快单次查找的时间,另一方面也要减少一个页面中资源使用了多个不同域的情况;
  • 避免页面跳转:页面跳转相当于又打开一个新的页面,耗费的时间就会比较长,所以要尽量避免使用页面跳转;
  • 使用内容分发网络(CDN):使用CDN相当于对静态内容做了缓存,并把缓存内容放在网络供应商(ISP)的机房,用户根据就近原则到ISP机房获取这些被缓存了的静态资源,因此可以大幅提高性能;
  • Gzip压缩传输文件:压缩可以帮助减小传输文件的大小,进而可以从网络传输时间的层面来减少响应时间;

第三,代码级性能测试

代码级性能测试,是指在单元测试阶段就对代码的时间性能和空间性能进行必要的测试和评估,以防止底层代码的效率问题在项目后期才被发现的尴尬。

如果你从事过性能测试相关的工作,一定遇到过这样的场景:系统级别的性能测试发现一个操作的响应时间很长,然后你要花费很多时间去逐级排查,最后却发现罪魁祸首是代码中某个实现低效的底层算法。这种自上而下的逐级排查定位的方法,效率通常都很低,代价也很高。

所以,我们就需要在项目早期,对一些关键算法进行代码级别的性能测试,以防止此类在代码层面就可以被发现的性能问题,遗留到最后的系统性能测试阶段才被发现。

但是,从实际执行的层面来讲,代码级性能测试并不存在严格意义上的测试工具,通常的做法是:改造现有的单元测试框架。

最常使用的改造方法是:

  1. 将原本只会执行一次的单元测试用例连续执行n次,这个n的取值范围通常是2000~5000;
  2. 统计执行n次的平均时间。如果这个平均时间比较长(也就是单次函数调用时间比较长)的话,比如已经达到了秒级,那么通常情况下这个被测函数的实现逻辑一定需要优化。

这里之所以采用执行n次的方式,是因为函数执行时间往往是毫秒级的,单次执行的误差会比较大,所以采用多次执行取平均值的做法。

第四,压力测试

压力测试,通常指的是后端压力测试,一般采用后端性能测试的方法,不断对系统施加压力,并验证系统化处于或长期处于临界饱和阶段的稳定性以及性能指标,并试图找到系统处于临界状态时的主要瓶颈点。所以,压力测试往往被用于系统容量规划的测试。

还有些情况,在执行压力测试时,我们还会故意在临界饱和状态的基础上继续施加压力,直至系统完全瘫痪,观察这个期间系统的行为;然后,逐渐减小压力,观察瘫痪的系统是否可以自愈。

第五,配置测试

配置测试,主要用于观察系统在不同配置下的性能表现,通常使用后端性能测试的方法:

  1. 通过性能基准测试(Performance Benchmark)建立性能基线(Performance Baseline);
  2. 在此基础上,调整配置;
  3. 基于同样的性能基准测试,观察不同配置条件下系统性能的差异,根本目的是要找到特定压力模式下的最佳配置。

这里需要注意的是,“配置”是一个广义配置的概念,包含了以下多个层面的配置:

  • 宿主操作系统的配置;
  • 应用服务器的配置;
  • 数据库的配置;
  • JVM的配置;
  • 网络环境的配置;

第六,并发测试

并发测试,指的是在同一时间,同时调用后端服务,期间观察被调用服务在并发情况下的行为表现,旨在发现诸如资源竞争、资源死锁之类的问题。

谈到并发测试,我就不得不和你说说“集合点并发”的概念了,它源于HP的LoadRunner,目前已经被广泛使用了。那,到底什么是“集合点并发”呢?

假设我们希望后端调用的并发数是100,如果直接设定100个并发用户是无法达到这个目标的,因为这100个并发用户会各自执行各自的操作,你无法控制某一个确定的时间点上后端服务的并发数量。

为了达到准确控制后端服务并发数的目的,我们需要让某些并发用户到达该集合点时,先处于等待状态,直到参与该集合的全部并发用户都到达时,再一起向后端服务发起请求。简单地说,就是先到的并发用户要等着,等所有并发用户都到了以后,再集中向后端服务发起请求。

比如,当要求的集合点并发数是100时,那么前99个到达的用户都会等在那里,直到第100个用户到了,才集中向后端服务发起请求。当然,实际达到服务器的并发请求数,还会因为网络延迟等原因小于100。

所以,在实际项目中,我建议在要求的并发数上进行适当放大,比如要求的并发数是100,那我们集合点并发数可以设置为120。

第七,可靠性测试

可靠性测试,是验证系统在常规负载模式下长期运行的稳定性。

虽然可靠性测试在不同公司的叫法不同,但其本质就是通过长时间模拟真实的系统负载来发现系统潜在的内存泄漏、链接池回收等问题

由于真实环境下的实际负载,会有高峰和低谷的交替变化(比如,对于企业级应用,白天通常是高峰时段,而晚上则是低峰时段),所以为了尽可能地模拟出真实的负载情况,我们会每12小时模拟一个高峰负载,两个高峰负载中间会模拟一个低峰负载,依次循环3-7天,形成一个类似于“波浪形”的系统测试负载曲线。

然后,用这个“波浪形”的测试负载模拟真实的系统负载,完成可靠性测试。同样地,可靠性测试也会持续3-7天。

聊完了常用性能测试方法的种类后,我们再来简单看一下性能测试的四大应用领域,以及每个应用领域都会使用哪些性能测试方法。

性能测试的四大应用领域

不同的性能测试方法适用于不同的应用领域去解决不同的问题,这里“不同的应用领域”主要包括能力验证、能力规划、性能调优、缺陷发现这四大方面。每个应用领域可以根据自身特点,选择合适的测试方法。

第一,能力验证

能力验证是最常用,也是最容易理解的性能测试的应用领域,主要是验证“某系统能否在A条件下具有B能力”,通常要求在明确的软硬件环境下,根据明确的系统性能需求设计测试方案和用例。

能力验证这个领域最常使用的测试方法,包括后端性能测试、压力测试和可靠性测试。

第二,能力规划

能力规划关注的是,如何才能使系统达到要求的性能和容量。通常情况下,我们会采用探索性测试的方式来了解系统的能力。

能力规划解决的问题,主要包括以下几个方面:

  • 能否支持未来一段时间内的用户增长;
  • 应该如何调整系统配置,使系统能够满足不断增长的用户数需求;
  • 应用集群的可扩展性验证,以及寻找集群扩展的瓶颈点;
  • 数据库集群的可扩展性验证;
  • 缓存集群的可扩展性验证;

能力规划最常使用的测试方法,主要有后端性能测试、压力测试、配置测试和可靠性测试。

第三,性能调优

性能调优,其实是性能测试的延伸。在一些大型软件公司,会有专门的性能工程(Performance Engineering)团队,除了负责性能测试的工作外,还会负责性能调优。

性能调优主要解决性能测试过程中发现的性能瓶颈的问题,通常会涉及多个层面的调整,包括硬件设备选型、操作系统配置、应用系统配置、数据库配置和应用代码实现的优化等等。

这个领域最常用的测试方法,涵盖了我在上面分享的七大类测试方法,即后端性能测试、前端性能测试、代码级性能测试、压力测试、配置测试、并发测试和可靠性测试。

第四,缺陷发现

缺陷发现,是一个比较直接的应用领域,通过性能测试的各种方法来发现诸如内存泄露、资源竞争、不合理的线程锁和死锁等问题。

缺陷发现,最常用的测试方法主要有并发测试、压力测试、后端性能测试和代码级性能测试。

上面这些内容就是性能测试的常用方法和应用领域了,我用一张表汇总了各个应用领域需要用到的测试方法,希望可以帮助你记忆、理解。

总结

本篇文章探讨了并发用户数、响应时间和系统吞吐量三者之间的关系:

  • 当系统整体负载并不是很大时,随着并发用户数的增长,系统的吞吐量也会随之线性增长;
  • 随着并发用户数的进一步增长,系统处理能力逐渐趋于饱和,因此每个用户的响应时间会逐渐变长,相应地,系统的整体吞吐量并不会随着并发用户数的增长而继续线性增长。
  • 如果并发用户数再继续增长,系统处理能力达到过饱和状态,此时所有用户的响应时间会变得无限长,相应地,系统的整体吞吐量会降为零,系统处于被压垮的状态。

另外,分享了后端性能测试、前端性能测试、代码级性能测试、压力测试、配置测试、并发测试,以及可靠性测试这七种常用的性能测试方法,并探讨了这七种方法在能力验证、能力规划、性能调优和缺陷发现这四种场景下的使用情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1384820.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于STM32的CMT液晶屏控制器驱动程序设计与优化

本文以STM32微控制器为基础,设计并优化了一个用于控制CMT液晶屏的驱动程序。在设计过程中,我们首先介绍了液晶屏的基本工作原理,包括CMT液晶屏的结构和信号传输机制。然后,我们详细讨论了STM32微控制器的GPIO、SPI和DMA模块的特性…

Invalid bound statement (not found)(xml文件创建问题)

这边大致讲一下我的经历,不想看的直接点目录去解决方法 今天照着老师视频学习,中间老师在使用动态SQL时,直接复制了一份,我想这么简单的一个,我直接从网上找内容创建一个好了,但是,但是没想到过…

书生·浦语大模型实战营-学习笔记3

目录 (3)基于 InternLM 和 LangChain 搭建你的知识库1. 大模型开发范式(RAG、Fine-tune)RAG微调 (传统自然语言处理的方法) 2. LangChain简介(RAG开发框架)3. 构建向量数据库4. 搭建知识库助手5. Web Demo部…

word无法插入方程式(方程式反灰)

word无法插入方程式(方程式反灰) 来自实测>插入方程式,反灰用不了>随便存在哪里,右键看属性:>发现真的是doc,得改成docx才可以:>打开原始档案,另存为word文件即可&#…

机器学习 | 多层感知机MLP

机器学习 | 多层感知机MLP 1. 实验目的 自行构造一个多层感知机,完成对某种类型的样本数据的分类(如图像、文本等),也可以对人工自行构造的二维平面超过3类数据点(或者其它标准数据集)进行分类。 2. 实验…

Java安装(可多版本共存)及IIntelliJ IDEA环境搭建汉化(保姆级教程!)

编程如画,我是panda! 这次给大家出一期JAVA安装以及IIntelliJ IDEA的安装教程 IIntelliJ IDEA分为社区版和专业版,两版的教程都有,小伙伴们根据需要自行选择使用 并且我会讲解一台计算机中多个版本JAVA JDK配置安装 前言 我最早接…

书生·浦语大模型实战营笔记(四)

Finetune模型微调 直接使用现成的大语言模型,在某些场景下效果不好,需要根据具体场景进行微调 增量预训练:投喂垂类领域知识 陈述形式,无问答,即只有assistant 指令跟随:system-user-assistant XTuner …

【力扣每日一题】力扣2696删除子串后的字符串最小长度

题目来源 力扣2696删除子串后的字符串最小长度 题目概述 给你一个仅由 大写 英文字符组成的字符串 s 。 你可以对此字符串执行一些操作,在每一步操作中,你可以从 s 中删除 任一个 "AB" 或 "CD" 子字符串。 通过执行操作&#xff…

保卫战小游戏

欢迎来到程序小院 保卫战 玩法&#xff1a;当鬼子进入射击范围内点击鼠标左键射击&#xff0c;不要让鬼子越过炮台哦&#xff0c;快去杀鬼子去吧^^。开始游戏https://www.ormcc.com/play/gameStart/249 html <div style"position: relative;" id"gameDiv&q…

关于浏览器下载的时候出现失败,网络错误

我试过所有浏览器&#xff0c;谷歌&#xff0c;firefox,qq浏览器&#xff0c;还是edge都不好使&#xff0c; 1.看网上说是http debugger的问题&#xff0c;但是我没有找到这个服务项 2.也有说可以通过修改或设置下载路径解决 -------- 我通过下载一个叫xdm的软件&#xff…

网络协议与攻击模拟_05TCP协议

一、传输层知识回顾 &#xff11;、传输层的功能 定义应用层协议数据报文的端口号&#xff0c;流量控制对原始数据进行分段处理 &#xff12;、传输层提供的服务 传输连接服务数据传输服务、流量控制、差错控制、序列控制 &#xff13;、传输层的协议 面向连接的传输协议…

VQGAN:从图像重建到图像生成

本文的目标是作为全新图像生成系统的VQGAN。我已经开始讨论VQGAN的一部分——自编码器&#xff08;VQVAE&#xff1a;矢量量化变分自动编码器&#xff09;。VQVAE的概念是对编码器、解码器和码书的同时训练&#xff0c;该码书适用于所有可能的图像。码书是一组256个嵌入向量。具…

毕业设计:基于python微博舆情分析系统+可视化+Django框架 K-means聚类算法(源码)✅

毕业设计&#xff1a;2023-2024年计算机专业毕业设计选题汇总&#xff08;建议收藏&#xff09; 毕业设计&#xff1a;2023-2024年最新最全计算机专业毕设选题推荐汇总 &#x1f345;感兴趣的可以先收藏起来&#xff0c;点赞、关注不迷路&#xff0c;大家在毕设选题&#xff…

Material Design 进阶(十一)——Chip,ChipGroup,ChipDrawable使用

流式布局标签发展历程 第一阶段&#xff1a;实现这种界面的时候&#xff0c;基本都是自定义一个控件&#xff0c;然后在Java代码中动态的 添加一个个的TextView&#xff0c;还需要计算布局宽度/高度&#xff0c;进行换行等等处理&#xff0c;比较复杂;第二阶段&#xff1a;使用…

CSC8021_computer network_The Transport Layer

Role of the transport layer • The transport layer is responsible for providing a reliable end-to-end connection between two application processes in a network • Abstracting away the physical subnet • Does not involve intermediate nodes • Takes a netwo…

Centos源码编译安装Redis

Redis是常用的内容使用工具&#xff0c;每次安装服务器都需要安装Redis 为了减少重复工作&#xff0c;写了一个脚本自动安装Redis&#xff0c;如下 #!/bin/sh #下载源码 curl -O http://download.redis.io/redis-stable.tar.gz # 解压缩 tar zxf redis-stable.tar.gz cd redi…

【Redis集群】docker实现3主3从扩缩容架构配置案例

一&#xff0c;集群规划及准备工作 架构实现&#xff1a;Redis3主3从 二&#xff0c;搭建命令 第一步&#xff0c;创建6台服务&#xff1a; docker run -d --name redis-node-1 --net host --privilegedtrue -v /data/redis/share/redis-node-1:/data redis:6.0.8 --clust…

照片删除了怎么恢复回来

照片&#xff0c;对我们来说&#xff0c;这两个字眼再熟悉不过了&#xff0c;每一张照片都包含无比重要的意义&#xff0c;相信在大家的心目中&#xff0c;这些包含意义的照片都是无价的。怎样找回删除的照片&#xff1f; 既然这些照片对我们来说意义非凡&#xff0c;那如果不小…

超详细的搭建压测平台笔记

0、前言 最近重新回来学习熊哥的极客教程&#xff0c;结合自己学习的shell编程和Docker的指令学习&#xff0c;对熊哥的一些操作做bash脚本自动化&#xff0c;将搭建压测平台的步骤做记录&#xff0c;目的是分享搭建过程。 过程中会安装docker,mysql,redis,influxdb,grafana,…

分布形态的度量_峰度系数的探讨

集中趋势和离散程度是数据分布的两个重要特征,但要全面了解数据分布的特点&#xff0c;还应掌握数据分布的形态。 描述数据分布形态的度量有偏度系数和峰度系数, 其中偏度系数描述数据的对称性,峰度系数描述与正态分布的偏离程度。 峰度系数反映分布峰的尖峭程度的重要指标. 当…