RK3568驱动指南|第十二篇 GPIO子系统-第134章 三级节点操作函数实验

news2024/9/24 23:32:15

瑞芯微RK3568芯片是一款定位中高端的通用型SOC,采用22nm制程工艺,搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码,支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU,可用于轻量级人工智能应用。RK3568 支持安卓 11 和 linux 系统,主要面向物联网网关、NVR 存储、工控平板、工业检测、工控盒、卡拉 OK、云终端、车载中控等行业。


【公众号】迅为电子

【粉丝群】824412014(加群获取驱动文档+例程)

【视频观看】嵌入式学习之Linux驱动(第十二篇 GPIO子系统_全新升级)_基于RK3568

【购买链接】迅为RK3568开发板瑞芯微Linux安卓鸿蒙ARM核心板人工智能AI主板


第134章 三级节点操作函数实验

在上一个章节中讲解了新版本GPIO子系统中的GPIO操作实验,而在进行操作之前首先要获取相应的gpio描述,在前面的示例中获取的都是二级节点的GPIO描述,那如果我们要如何获取下面led1和led2两个三级节点的gpio描述呢?

my_gpio:gpio1_a0 {
    compatible = "mygpio";
	led1{
		my-gpios = <&gpio1 RK_PA0 GPIO_ACTIVE_HIGH>, <&gpio1 RK_PB1 GPIO_ACTIVE_HIGH>;
		pinctrl-names = "default";
		pinctrl-0 = <&mygpio_ctrl>;		
	};
	led2{
		my-gpios = <&gpio1 RK_PB0 GPIO_ACTIVE_HIGH>;	
	};
};

如果仍旧使用gpiod_get来获取gpio描述会发现是获取不成功呢,获取三级节点的GPIO描述要使用什么函数呢,带着疑问,让我们进入本章节的学习吧。

134.1 函数介绍

1计算子节点数量

函数原型

unsigned int device_get_child_node_count(struct device *dev);

头文件

 <linux/device.h>。

参数:

 struct device 类型的指针 dev,表示要计算子节点数量的设备节点。

函数功能:

用于计算给定设备节点 dev 的子节点数量。

返回值:

如果成功获取子节点数量,返回一个大于 0 的无符号整数,表示设备节点的子节点数量。如果获取失败,返回值为 0。

该函数的功能是通过给定设备节点 dev 来计算其子节点的数量。它可以用于在设备驱动程序中了解设备节点的层级结构,以及设备节点下子节点的数量。

2获取指定节点GPIO结构描述

(1)函数原型:

struct gpio_desc *fwnode_get_named_gpiod(struct fwnode_handle *fwnode, const char *propname, int index, enum gpiod_flags dflags, const char *label);

(2)头文件:

 <linux/gpio/consumer.h>。

(3)参数:

fwnode:指向 struct fwnode_handle 的指针,表示要获取GPIO的节点对象地址。

propname:属性名,指定要获取的GPIO的属性名称。

index:索引值,用于指定要获取的GPIO在属性中的索引,用于GPIO 属性值包含多个 GPIO 引脚描述时。

dflags:获得到 GPIO 后的初始化配置,可以使用以下枚举值:

GPIOD_ASIS:不进行初始化。

GPIOD_IN:初始化为输入模式。

GPIOD_OUT_LOW:初始化为输出模式,输出低电平。

GPIOD_OUT_HIGH:初始化为输出模式,输出高电平。

label:标签,用于标识 GPIO 的描述。

(4)函数功能:

该函数通过指定节点的对象地址获取子节点中的GPIO结构描述。

(5)返回值:

返回一个指向 struct gpio_desc 的指针,表示获取到的 GPIO 结构描述。如果获取失败,返回值为 NULL。

该函数的功能是通过给定的节点对象地址 fwnode,获取指定属性名 propname 中的 GPIO 结构描述。可以通过 index 参数指定在属性中的索引。获取到的 GPIO 结构描述可以用于后续的GPIO操作。函数还可以根据 dflags 参数指定GPIO的初始化配置,例如设置为输入或输出模式,并指定输出的默认电平。label 参数用于提供 GPIO 的描述标签。函数返回获取到的GPIO结构描述指针,如果获取失败,则返回 NULL。

3获取下一个子节点对象地址

函数原型:

struct fwnode_handle *device_get_next_child_node(struct device *dev, struct fwnode_handle *child);

头文件:

 <linux/device.h>。

参数:

dev:指向 struct device 的指针,表示父设备节点。

child:指向 struct fwnode_handle 的指针,表示当前子设备节点。

函数功能:

用于获取给定父设备节点 dev 的下一个子设备节点。

返回值:

返回一个指向 struct fwnode_handle 的指针,表示下一个子设备节点。如果没有下一个子设备节点,返回值为 NULL。

该函数的功能是在给定的父设备节点 dev 下获取当前子设备节点 child 的下一个子设备节点。通过调用这个函数,可以遍历父设备节点的所有子设备节点。函数返回下一个子设备节点的 struct fwnode_handle 指针,如果没有下一个子设备节点,则返回 NULL。这个函数在设备驱动程序开发中常用于遍历设备树中的设备节点。

134.2 设备树的修改

本小节修改好的设备树以及编译好的boot.img镜像存放路径为:iTOP-RK3568开发板【底板V1.7版本】\03_【iTOP-RK3568开发板】指南教程\02_Linux驱动配套资料\04_Linux驱动例程\88_gpioctrl07\01_内核镜像。

由于本章节要获取到三级节点的GPIO描述,所以要对rk3568-evb1-ddr4-v10.dtsi设备树进行内容的修改,将根节点中的gpiol_a0修改为以下内容:

my_gpio:gpio1_a0 {
    compatible = "mygpio";
	led1{
		my-gpios = <&gpio1 RK_PA0 GPIO_ACTIVE_HIGH>, <&gpio1 RK_PB1 GPIO_ACTIVE_HIGH>;
		pinctrl-names = "default";
		pinctrl-0 = <&mygpio_ctrl>;		
	};
	led2{
		my-gpios = <&gpio1 RK_PB0 GPIO_ACTIVE_HIGH>;	
	};
};

添加完成如下图所示:

图134-1

至此,关于设备树相关的修改就完成了,保存退出之后,编译内核,然后将生成的boot.img镜像烧写到开发板上即可。

134.3 驱动程序的编写

本实验对应的网盘路径为:iTOP-RK3568开发板【底板V1.7版本】\03_【iTOP-RK3568开发板】指南教程\02_Linux驱动配套资料\04_Linux驱动例程\88_gpioctrl07\02_module

编写完成的gpio_api.c代码如下所示:

#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mod_devicetable.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio.h>

unsigned int count;
struct fwnode_handle *child_fw = NULL;
struct gpio_desc *led[2];
int i = 0;
int num = 0;

// 平台设备初始化函数
static int my_platform_probe(struct platform_device *dev) 
{
    printk("This is my_platform_probe\n");
    
    // 获取父设备节点的子设备节点数量
    count = device_get_child_node_count(&dev->dev);
    printk("count is %d\n", count);
    
    for (i = 0; i < count; i++) {
        // 获取下一个子设备节点
        child_fw = device_get_next_child_node(&dev->dev, child_fw);
        
        if (child_fw) {
            // 获取子设备节点中名为 "my-gpios" 的 GPIO 描述
            led[i] = fwnode_get_named_gpiod(child_fw, "my-gpios", 0, 0, "LED");
        }
        
        // 将 GPIO 描述转换为 GPIO 号
        num = desc_to_gpio(led[i]);
        printk("num is %d\n", num);
    }

    return 0;
}

// 平台设备的移除函数
static int my_platform_remove(struct platform_device *pdev)
{
    printk(KERN_INFO "my_platform_remove: Removing platform device\n");

    // 清理设备特定的操作
    // ...

    return 0;
}


const struct of_device_id of_match_table_id[]  = {
	{.compatible="mygpio"},
};

// 定义平台驱动结构体
static struct platform_driver my_platform_driver = {
    .probe = my_platform_probe,
    .remove = my_platform_remove,
    .driver = {
        .name = "my_platform_device",
        .owner = THIS_MODULE,
		.of_match_table =  of_match_table_id,
    },
};

// 模块初始化函数
static int __init my_platform_driver_init(void)
{
    int ret;

    // 注册平台驱动
    ret = platform_driver_register(&my_platform_driver);
    if (ret) {
        printk(KERN_ERR "Failed to register platform driver\n");
        return ret;
    }

    printk(KERN_INFO "my_platform_driver: Platform driver initialized\n");

    return 0;
}

// 模块退出函数
static void __exit my_platform_driver_exit(void)
{
    // 注销平台驱动
    platform_driver_unregister(&my_platform_driver);

    printk(KERN_INFO "my_platform_driver: Platform driver exited\n");
}

module_init(my_platform_driver_init);
module_exit(my_platform_driver_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("topeet");

134.4运行测试

134.4.1 编译驱动程序

在上一小节中的gpio_api.c代码同一目录下创建 Makefile 文件,Makefile 文件内容如下所示:

export ARCH=arm64#设置平台架构
export CROSS_COMPILE=aarch64-linux-gnu-#交叉编译器前缀
obj-m += gpio_api.o    #此处要和你的驱动源文件同名
KDIR :=/home/topeet/Linux/linux_sdk/kernel    #这里是你的内核目录                                                                                                                            
PWD ?= $(shell pwd)
all:
    make -C $(KDIR) M=$(PWD) modules    #make操作
clean:
    make -C $(KDIR) M=$(PWD) clean    #make clean操作

对于Makefile的内容注释已在上图添加,保存退出之后,来到存放gpio_api.c和Makefile文件目录下,如下图(图134-2)所示:

图 134-2

然后使用命令“make”进行驱动的编译,编译完成如下图(图134-3)所示:

图 134-3

编译完生成gpio_api.ko目标文件,如下图(图134-4)所示:

图 134-4

至此驱动模块就编译成功了。

134.4.2 运行测试

首先需要确保当前开发板使用的内核镜像是我们在134.2小节中修改设备树后编译生成的镜像,然后

启动开发板,使用以下命令进行驱动的加载,如下图(图134-5)所示:

insmod gpio_api.ko

图 134-5

首先打印出了子节点的数量为2,也就是led1和led2,接下来的两个num值分别为32和40,分别对应两个节点的第一个GPIO属性的引脚编号,前面也学习过了换算相关的知识,gpio1 RK_PA0和gpio1 RK_PB0分贝对应32和40,匹配正确,然后使用以下命令进行驱动的卸载,如下图所示:

rmmod gpio_api.ko

 

图 134-6

至此,三级节点操作函数实验就完成了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1380404.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis:原理速成+项目实战——Redis实战14(BitMap实现用户签到功能)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;Redis&#xff1a;原理速成项目实战——Redis实战13&#xff08;GEO实现附近商铺、滚动分页查询&#xff09; &#x1f4da;订阅…

【AI的未来 - AI Agent系列】【MetaGPT】0. 你的第一个MetaGPT程序

《MetaGPT智能体开发入门》开课&#xff0c;跟着课程&#xff0c;学习MetaGPT智能体开发。 0. 安装MetaGPT 请确保你的系统已安装Python 3.9。你可以通过以下命令进行检查&#xff1a; python3 --version下面是具体的安装命令&#xff1a; 安装命令 pip install metagpt如…

ZooKeeper 实战(四) Curator Watch事件监听

文章目录 ZooKeeper 实战(四) Curator Watch事件监听0.前言1.Watch 事件监听概念2.NodeCache2.1.全参构造器参数2.2.代码DEMO2.3.日志输出 3.PathChildrenCache3.1.全参构造器参数3.2.子节点监听时间类型3.2.代码DEMO 4.TreeCache4.1.构造器参数4.2.代码DEMO4.3.日志输出 ZooKe…

Flink standalone集群部署配置

文章目录 简介软件依赖部署方案二、安装1.下载并解压2.ssh免密登录3.修改配置文件3.启动集群4.访问 Web UI 简介 Flink独立模式&#xff08;Standalone&#xff09;是部署 Flink 最基本也是最简单的方式&#xff1a;所需要的所有 Flink 组件&#xff0c; 都只是操作系统上运行…

别再为创业失败找借口了!否则你永远无法创业成功!2024适合上班族的创业,2024个人创业做什么

每当聊起创业&#xff0c;很多人嘴上都很积极&#xff0c;行动都很低迷&#xff0c;事后就开始找各种理由开始否定创业这个路&#xff0c;要么就是大环境不好&#xff0c;要么就是行业太差&#xff0c;还有就是竞争太多&#xff0c;反正不会是自己的能力太差。 其实创业没有你想…

Postgres 中文周报:Postgres Weekly 537 期

本周报由 Cloudberry Database 社区编译自英文版《Postgres Weekly》&#xff0c;译文较原文有所调整。 推荐博文 &#x1f3c6; PostgreSQL: The DBMS of the Year 2023 PostgreSQL 荣获 DB-Engines 网站 2023 年度 DBMS 冠军。DB-Engines 收集了 480 款数据库系统信息并跟踪…

各版本 操作系统 对 .NET Framework 与 .NET Core 支持

有两种类型的受支持版本&#xff1a;长期支持 (LTS) 版本和标准期限支持 (STS) 版本。 所有版本的质量都是一样的。 唯一的区别是支持的时间长短。 LTS 版本可获得为期三年的免费支持和补丁。 STS 版本可获得 18 个月的免费支持和修补程序。 有关详细信息&#xff0c;请参阅 .N…

2024年美国大学生数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…

mac 上 ssh: connect to host localhost port 22: Connection refused

1。 问题 在搭建hadoop环境的时候 发现ssh localhost 在报错 2. 解决 打开系统设置 -> 共享 -> -> 在左边服务中选择 远程登录 注意红框这些选项慎重选择&#xff01;&#xff01;&#xff01; 修改后&#xff0c;在终端再次 ssh localhost 发现登录成功了 如果…

SkipList 的索引过程,能否越两级搜索

“SkipList 的索引过程&#xff0c;能否越两级搜索&#xff1f;” 昨天&#xff0c;一个工作 7 年的粉丝&#xff0c;去某外包公司面试&#xff0c;被问到这个问题不知道该怎么回答。 今天正好有空&#xff0c;给大家分享一下这个问题的回答思路。 对了&#xff0c;这个问题…

【保姆级教程】【YOLOv8替换主干网络】【1】使用efficientViT替换YOLOV8主干网络结构

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

08-微服务链路追踪案例

4.4.1&#xff1a;环境说明 dubbo provider: 192.168.58.153 dubbo consumer: 192.168.58.154 zookeeper: 192.168.58.1554.4.2: zookeeper 部署 ~$ apt install openjdk-11-jdk -y ~$ wget https://dlcdn.apache.org/zookeeper/zookeeper-3.8.3/apache-zookeeper-3.8.3-bin.…

【计算机组成原理】指令流水线的三种冒险情况(Hazards)

冒险 在计算机架构中&#xff0c;流水线冒险是指在指令流水线的执行过程中由于数据相关性或控制相关性而导致的一种性能问题。指令流水线是将指令执行过程划分为多个阶段&#xff0c;这样可以同时处理多条指令&#xff0c;从而提高指令执行的效率。然而&#xff0c;流水线执行…

新版云进销存ERP销售库存仓库员工管理系统源码

新版云进销存ERP销售库存仓库员工管理系统源码 系统介绍&#xff1a;2022版本,带合同报价单打印&#xff0c;修复子账号不显示新加客户的BUG&#xff0c;还有其他方面的优化。 简单方便。 功能强大&#xff0c;系统采用phpMYSQL开发&#xff0c;B/S架构&#xff0c;方便随地使用…

怎么找微信服务器的IP地址

首先&#xff0c;让微信客户端在PC端运行&#xff0c;在任务管理器->详细信息中&#xff0c;找到WeChat.exe的进程&#xff0c;找到PID 就是微信进程的ID号&#xff0c;如下图所示&#xff1a; 打开一个命令行窗口&#xff0c;cmd或者powershell窗口都可以&#xff0c;输入…

互联网医院系统|北京线上问诊|线上问诊系统功能解析

随着科技的不断发展&#xff0c;线上问诊系统作为一种快速、便捷的医疗服务方式在近年来越来越受欢迎。本文将重点介绍线上问诊系统的开发功能及其优势&#xff0c;帮助读者更好地了解这一医疗服务方式的价值和好处。 一、线上问诊系统的开发功能&#xff1a; 1、患者注册与登…

【2023年度回顾】让我们在新的一年继续努力前行

每当我们在努力的时候都会想&#xff1a;为什么我要努力&#xff1f;躺着不舒服吗&#xff1f; 大家好&#xff01;我是命运之光&#xff0c;一名普普通通的计算机科学与技术专业的大三学生。 &#x1f4d5;回顾一下整个2023年 因为我有每天发朋友圈的习惯&#xff0c;所以这一…

二分搜索边界问题的简单结论

引言 二分搜索是一个说简单也很简单&#xff08;代码很固定&#xff0c;也没几行&#xff09;&#xff0c;说难也很难&#xff08;边界问题可能会让人想不太清楚&#xff09;。 事实上&#xff0c;边界问题也是是算法题中普遍存在的难点。 这篇文章讲两个简单的结论&#xff0…

Head First Design Patterns -工厂模式

什么是工厂模式 工厂方法模式定义了一个创建对象的接口&#xff0c;但由子类来决定要实例化那个类。工厂方法让类把实例化推迟到了子类。 为什么要有工厂模式 书中以pizza店制作pizza为例子&#xff0c;假设不用工厂模式&#xff0c;在制作pizza阶段我们需要这样去实例化类&am…

Python--装饰器

在 Python 中&#xff0c;装饰器是一种特殊类型的函数&#xff0c;它们用于修改或增强其他函数或方法的行为。装饰器本质上是一个函数&#xff0c;它接受一个函数作为参数&#xff0c;并返回一个新的函数。使用装饰器可以在不修改原函数代码的前提下&#xff0c;给函数添加新的…