leetcode 动态规划(爬楼梯、零钱兑换、完全平方数)

news2024/11/18 19:53:25

70. 爬楼梯(进阶版)

卡码网:57. 爬楼梯(opens new window)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

输入描述:输入共一行,包含两个正整数,分别表示n, m

输出描述:输出一个整数,表示爬到楼顶的方法数。

输入示例:3 2

输出示例:3

提示:

当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。

此时你有三种方法可以爬到楼顶。

1 阶 + 1 阶 + 1 阶段
1 阶 + 2 阶
2 阶 + 1 阶

思路

之前讲这道题目的时候,因为还没有讲背包问题,所以就只是讲了一下爬楼梯最直接的动规方法(斐波那契)。

这次终于讲到了背包问题,我选择带录友们再爬一次楼梯!

这道题目 我们在动态规划:爬楼梯 (opens new window)中已经讲过一次了,这次我又给本题加点料,力扣上没有原题,所以可以在卡码网57. 爬楼梯 (opens new window)上来刷这道题目。

我们之前做的 爬楼梯 是只能至多爬两个台阶。

这次改为:一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

这又有难度了,这其实是一个完全背包问题。

1阶,2阶,… m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时大家应该发现这就是一个完全背包问题了!

和昨天的题目动态规划:377. 组合总和 Ⅳ (opens new window)基本就是一道题了。

动规五部曲分析如下:

确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。

确定递推公式
在动态规划:494.目标和 (opens new window)、 动态规划:518.零钱兑换II (opens new window)、动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]

那么递推公式为:dp[i] += dp[i - j]

dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果

确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

所以需将target放在外循环,将nums放在内循环。

每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

举例来推导dp数组
介于本题和动态规划:377. 组合总和 Ⅳ (opens new window)几乎是一样的,这里我就不再重复举例了。

以上分析完毕,C++代码如下:

#include <iostream>
#include <vector>
using namespace std;
int main() {
    int n, m;
    while (cin >> n >> m) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) { // 遍历物品
            for (int j = 1; j <= m; j++) { // 遍历背包
                if (i - j >= 0) dp[i] += dp[i - j];
            }
        }
        cout << dp[n] << endl;
    }
}

322. 零钱兑换

力扣题目链接(opens new window)

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:

输入:coins = [2], amount = 3
输出:-1
示例 3:

输入:coins = [1], amount = 0
输出:0
示例 4:

输入:coins = [1], amount = 1
输出:1
示例 5:

输入:coins = [1], amount = 2
输出:2
提示:

1 <= coins.length <= 12
1 <= coins[i] <= 2^31 - 1
0 <= amount <= 10^4

思路

在动态规划:518.零钱兑换II (opens new window)中我们已经兑换一次零钱了,这次又要兑换,套路不一样!

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

动规五部曲分析如下:

确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

其他下标对应的数值呢?

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

代码如下:

vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;

确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。

所以本题并不强调集合是组合还是排列。

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

在动态规划专题我们讲过了求组合数是动态规划:518.零钱兑换II (opens new window),求排列数是动态规划:377. 组合总和 Ⅳ (opens new window)。

所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!

那么我采用coins放在外循环,target在内循环的方式。

本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序

综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。

举例推导dp数组
以输入:coins = [1, 2, 5], amount = 5为例
在这里插入图片描述
dp[amount]为最终结果。

以上分析完毕,C++ 代码如下:

// 版本一

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过
                    dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
                }
            }
        }
        if (dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }
};

时间复杂度: O(n * amount),其中 n 为 coins 的长度
空间复杂度: O(amount)
对于遍历方式遍历背包放在外循环,遍历物品放在内循环也是可以的,我就直接给出代码了

// 版本二

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 1; i <= amount; i++) {  // 遍历背包
            for (int j = 0; j < coins.size(); j++) { // 遍历物品
                if (i - coins[j] >= 0 && dp[i - coins[j]] != INT_MAX ) {
                    dp[i] = min(dp[i - coins[j]] + 1, dp[i]);
                }
            }
        }
        if (dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }
};

Python:
先遍历物品 后遍历背包

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount + 1)  # 创建动态规划数组,初始值为正无穷大
        dp[0] = 0  # 初始化背包容量为0时的最小硬币数量为0

        for coin in coins:  # 遍历硬币列表,相当于遍历物品
            for i in range(coin, amount + 1):  # 遍历背包容量
                if dp[i - coin] != float('inf'):  # 如果dp[i - coin]不是初始值,则进行状态转移
                    dp[i] = min(dp[i - coin] + 1, dp[i])  # 更新最小硬币数量

        if dp[amount] == float('inf'):  # 如果最终背包容量的最小硬币数量仍为正无穷大,表示无解
            return -1
        return dp[amount]  # 返回背包容量为amount时的最小硬币数量

先遍历背包 后遍历物品

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount + 1)  # 创建动态规划数组,初始值为正无穷大
        dp[0] = 0  # 初始化背包容量为0时的最小硬币数量为0

        for i in range(1, amount + 1):  # 遍历背包容量
            for j in range(len(coins)):  # 遍历硬币列表,相当于遍历物品
                if i - coins[j] >= 0 and dp[i - coins[j]] != float('inf'):  # 如果dp[i - coins[j]]不是初始值,则进行状态转移
                    dp[i] = min(dp[i - coins[j]] + 1, dp[i])  # 更新最小硬币数量

        if dp[amount] == float('inf'):  # 如果最终背包容量的最小硬币数量仍为正无穷大,表示无解
            return -1
        return dp[amount]  # 返回背包容量为amount时的最小硬币数量

先遍历物品 后遍历背包(优化版)

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount + 1)
        dp[0] = 0

        for coin in coins:
            for i in range(coin, amount + 1): # 进行优化,从能装得下的背包开始计算,则不需要进行比较
                # 更新凑成金额 i 所需的最少硬币数量
                dp[i] = min(dp[i], dp[i - coin] + 1)

        return dp[amount] if dp[amount] != float('inf') else -1

先遍历背包 后遍历物品(优化版)

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [float('inf')] * (amount + 1)
        dp[0] = 0

        for i in range(1, amount + 1):  # 遍历背包容量
            for coin in coins:  # 遍历物品
                if i - coin >= 0:
                    # 更新凑成金额 i 所需的最少硬币数量
                    dp[i] = min(dp[i], dp[i - coin] + 1)

        return dp[amount] if dp[amount] != float('inf') else -1

279.完全平方数

力扣题目链接(opens new window)

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, …)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9
提示:

1 <= n <= 10^4

思路

可能刚看这种题感觉没啥思路,又平方和的,又最小数的。

我来把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

感受出来了没,这么浓厚的完全背包氛围,而且和昨天的题目动态规划:322. 零钱兑换 (opens new window)就是一样一样的!

动规五部曲分析如下:

确定dp数组(dp table)以及下标的含义
dp[j]:和为j的完全平方数的最少数量为dp[j]

确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?

看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。

非0下标的dp[j]应该是多少呢?

从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。

确定遍历顺序
我们知道这是完全背包,

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

在动态规划:322. 零钱兑换 (opens new window)中我们就深入探讨了这个问题,本题也是一样的,是求最小数!

所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!

我这里先给出外层遍历背包,内层遍历物品的代码:

ector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
    for (int j = 1; j * j <= i; j++) { // 遍历物品
        dp[i] = min(dp[i - j * j] + 1, dp[i]);
    }
}

举例推导dp数组
已输入n为5例,dp状态图如下:
在这里插入图片描述
dp[0] = 0 dp[1] = min(dp[0] + 1) = 1 dp[2] = min(dp[1] + 1) = 2 dp[3] = min(dp[2] + 1) = 3 dp[4] = min(dp[3] + 1, dp[0] + 1) = 1 dp[5] = min(dp[4] + 1, dp[1] + 1) = 2

最后的dp[n]为最终结果。

以上动规五部曲分析完毕C++代码如下:

// 版本一

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 0; i <= n; i++) { // 遍历背包
            for (int j = 1; j * j <= i; j++) { // 遍历物品
                dp[i] = min(dp[i - j * j] + 1, dp[i]);
            }
        }
        return dp[n];
    }
};

时间复杂度: O(n * √n)
空间复杂度: O(n)
同样我在给出先遍历物品,在遍历背包的代码,一样的可以AC的。

// 版本二

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        for (int i = 1; i * i <= n; i++) { // 遍历物品
            for (int j = i * i; j <= n; j++) { // 遍历背包
                dp[j] = min(dp[j - i * i] + 1, dp[j]);
            }
        }
        return dp[n];
    }
};

Python:
先遍历物品, 再遍历背包

class Solution:
    def numSquares(self, n: int) -> int:
        dp = [float('inf')] * (n + 1)
        dp[0] = 0

        for i in range(1, n + 1):  # 遍历背包
            for j in range(1, int(i ** 0.5) + 1):  # 遍历物品
                # 更新凑成数字 i 所需的最少完全平方数数量
                dp[i] = min(dp[i], dp[i - j * j] + 1)

        return dp[n]

先遍历背包, 再遍历物品

class Solution:
    def numSquares(self, n: int) -> int:
        dp = [float('inf')] * (n + 1)
        dp[0] = 0

        for i in range(1, int(n ** 0.5) + 1):  # 遍历物品
            for j in range(i * i, n + 1):  # 遍历背包
                # 更新凑成数字 j 所需的最少完全平方数数量
                dp[j] = min(dp[j - i * i] + 1, dp[j])

        return dp[n]

其他版本

class Solution:
    def numSquares(self, n: int) -> int:
        # 创建动态规划数组,初始值为最大值
        dp = [float('inf')] * (n + 1)
        # 初始化已知情况
        dp[0] = 0

        # 遍历背包容量
        for i in range(1, n + 1):
            # 遍历完全平方数作为物品
            j = 1
            while j * j <= i:
                # 更新最少完全平方数的数量
                dp[i] = min(dp[i], dp[i - j * j] + 1)
                j += 1

        # 返回结果
        return dp[n]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1378626.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用单片机设计PLC电路图

自记&#xff1a; 见另一篇文章&#xff0c;MOS驱动差了一个充电电容&#xff0c;栅极电容充电会有问题&#xff1b; 光耦用的直插&#xff0c;但板子用的贴片&#xff0c;此文档仅供参考 基本列出了PCB板情况&#xff0c;基础元器件&#xff0c;部分连接&#xff0c;原理等…

大厂设计师都在用Figma中文替代

设计原型别再只知道 Figma 了&#xff0c;现在百万设计师都在用 Figma 的中文替代——即时设计。即时设计是国内第一款基于 Web 的 UI 设计工具&#xff0c;它的出现的弥补了很多 Figma 在国内使用的局限性&#xff0c;凭借本土化的优势&#xff0c;免费使用的版本、丰富免费的…

【Leetcode】2696. 删除子串后的字符串最小长度

文章目录 题目思路代码 题目 2696. 删除子串后的字符串最小长度 思路 计算通过删除字符串中的 “AB” 和 “CD” 子串后&#xff0c;可获得的最终字符串的最小长度。 主要思路是使用一个栈来模拟字符串的处理过程&#xff0c;每次遍历字符串时&#xff0c;如果当前字符和栈…

Openstack组件glance对接swift

2、glance对接swift &#xff08;1&#xff09;可直接在数据库中查看镜像存放的位置、状态、id等信息 &#xff08;2&#xff09;修改glance-api的配置文件&#xff0c;实现对接swift存储&#xff08;配置文件在/etc/glance/glance-api.conf&#xff0c;建议先拷贝一份&#x…

野牛物联网-阿里云配置流程

1、 概述&#xff1a; 本文围绕阿里云物联网平台&#xff0c;实现设备上云、设备上报消息、云端订阅设备消息、云端下发指令到设备等服务&#xff0c;以野牛物联网YNK-MN316设备接入物联网平台为例&#xff0c;介绍设备如何接入物联网平台&#xff0c;向平台上报消息等。帮助您…

Bug:Goland左侧丢失项目结构(Goland常用快捷键)

Goland快捷键&小tips 1 常用快捷键 # 格式化代码 optioncommandL# 在项目中搜索文件中的内容 commandshiftF# 搜索.go文件 shiftshift&#xff08;按两次shift&#xff09;# 修改方法、变量&#xff08;同时替换引用处的名称&#xff09; fnshiftF6# 将选中代码抽取为方法…

验证端口连通性的工具 telent nc

验证端口连通性的工具 telent nc 1、怎么验证端口连通性的工具2、telnet3、nc 1、怎么验证端口连通性的工具 telent nc这2个工具都可以验证端口连通性 2、telnet 命令格式 默认是验证tcp端口连通性 telnet ip port如果需要验证udp端口连通性 需要加上 -u telnet -u ip por…

操作系统期末考复盘

简答题4题*5 20分计算题2题*5 10分综合应用2题*10 20分程序填空1题10 10分 1、简答题&#xff08;8抽4&#xff09; 1、在计算机系统上配置OS的目标是什么&#xff1f;作用主要表现在哪个方面&#xff1f; 在计算机系统上配置OS&#xff0c;主要目标是实现:方便性、…

电脑/设备网络共享给其他设备上网

文章目录 一、概述二、设置网络共享2.1 电脑可以上网&#xff0c;通过网络共享让其他设备也可以上网2.2 手机如何使用USB数据线共享网络给电脑 一、概述 现在有如下几种情况&#xff1a; 设备本身不能上网&#xff0c;需要通过电脑上网 笔记本WIFI连热点上网&#xff0c;然后…

【计算机组成原理】IEEE 754 标准定义的浮点数表示格式

IEEE 754 IEEE 754是一种由美国电气和电子工程师协会&#xff08;IEEE&#xff09;制定的标准&#xff0c;用于定义浮点数的表示和运算。这个标准定义了浮点数的格式、舍入规则、特殊值的处理以及算术操作的执行方式。 IEEE 754浮点数标准主要定义了两种浮点数格式&#xff1…

Java中的栈和队列操作,相互实现(力扣 232, 225)

栈和队列&#xff08;Java&#xff09; Java中的 栈 & 队列 操作栈的使用队列的使用 LeetCode 232. 用栈实现队列我的代码 LeetCode 225. 用队列实现栈我的代码 Java中的 栈 & 队列 操作 栈的使用 栈的方法功能Stack()构造一个空的栈E push(E e)将e入栈&#xff0c;并…

拦截器HandlerInterceptor | springmvc系列

拦截器&#xff0c;通俗来来将&#xff0c;就是我们将访问某个路径的请求给拦截下来&#xff0c;然后可以对这个请求做一些操作 基本使用 创建拦截器类 让类实现HandlerInterceptor接口&#xff0c;重写接口中的三个方法。 Component //定义拦截器类&#xff0c;实现Handle…

Java异常处理详解

Java异常处理详解 1. 异常概述2. 异常类别3. 异常处理机制3.1 try-catch示例代码&#xff1a;输出结果&#xff1a; 3.2 finally示例代码&#xff1a;输出结果&#xff1a; 3.3 throw和throws示例代码&#xff1a;输出结果&#xff1a; 4. 自定义异常示例代码&#xff1a;输出结…

【C初阶——指针5】鹏哥C语言系列文章,基本语法知识全面讲解——指针(5)

本文由睡觉待开机原创&#xff0c;转载请注明出处。 本内容在csdn网站首发 欢迎各位点赞—评论—收藏 如果存在不足之处请评论留言&#xff0c;共同进步&#xff01; 这里写目录标题 1.sizeof和strlen的对比2.数组和指针笔试题&#xff08;借用sizeof与strlen进行体会&#xff…

FFmpeg编程录制音频(Mac OS)

之前我们使用FFmpeg命令行工具进行了简单的音视频操作&#xff0c;这次在Mac OS环境下编写代码实现简单的音频录制功能。 FFmpeg命令行音频录制 首先回顾一下Mac OS环境下简单的音频录制命令行实现&#xff1a; ffmpeg -f avfoundation -i ":0" -t 20 -acodec pcm…

python_数据可视化_pandas_导入txt数据

目录 1.导入库 2.导入txt文件 3.指定分隔符 4.使用read_table导入csv格式文件 1.导入库 import pandas as pd 2.导入txt文件 data pd.read_table(D:/desktop/TestFile.txt,encodingutf-8)print(data) 3.指定分隔符 txt文件的默认分隔符为/t data pd.read_table(D:/des…

无法解析的外部符号 “public: virtual void * __cdecl MyTcpsocket::qt_metaca

问题&#xff1a;严重性 代码 说明 项目 文件 行 禁止显示状态 错误 LNK2001 无法解析的外部符号 "public: virtual void * __cdecl MyTcpsocket::qt_metacast(char const *)" (?qt_metacastMyTcpsocketUEAAPEAXPEBDZ) SmartTool D:\…

flutter在windows环境搭建

下载flutter https://flutter.cn/docs/development/tools/sdk/releases 下载相应的版本 我放在C盘下&#xff1a; 环境变量 再加系统变量&#xff1a; PUB_HOSTED_URLhttps://pub.flutter-io.cn 如图 FLUTTER_STORAGE_BASE_URLhttps://storage.flutter-io.cn 完成

Linux集锦大全【持续更新】

文章目录 Linux集锦大全【持续更新】Linux最常用的几个归档和压缩命令解压方法之一 tar语法压缩文件查看压缩文件的内容解压文件 解压方法之一 zip语法参数参考实例仅保存文件名 解压命令之一 unzip基本命令指定目录解压不解压某些文件 解压命令之一 gzip Linux最危险的几个命令…

AJAX入门到实战,学习前端框架前必会的(ajax+node.js+webpack+git)(六)

《诗小雅小旻》&#xff1a;“战战兢兢&#xff0c;如临深渊&#xff0c;如履薄冰。” 01.Nodejs安装与使用 什么是 Node.js&#xff1f; 什么是前端工程化&#xff1f; Node.js 为何能执行 JS&#xff1f; 查看当前使用的Node.js版本&#xff1a;node -v 执行JS&#xff1a;no…