【深度学习目标检测】十三、基于深度学习的血细胞识别(python,目标检测,yolov8)

news2025/1/14 2:39:40

血细胞计数是医学上一种重要的检测手段,用于评估患者的健康状况,诊断疾病,以及监测治疗效果。而目标检测是一种计算机视觉技术,用于在图像中识别和定位特定的目标。在血细胞计数中,目标检测技术可以发挥重要作用。

首先,血细胞计数通常需要处理大量的血液样本,手动计数每个细胞既耗时又容易出错。使用目标检测算法,可以自动识别和计数图像中的血细胞,大大提高了计数的准确性和效率。

其次,不同的血细胞(如红细胞、白细胞和血小板)具有不同的形态和大小,这使得使用传统的图像处理方法进行区分和计数变得困难。目标检测算法可以通过训练识别不同血细胞的特征,准确地区分和计数各种血细胞。

此外,目标检测算法还可以处理一些特殊情况,如细胞重叠、不规则形状、染色不均等。这些情况可能会影响手动计数的准确性和可靠性。

最后,使用目标检测进行血细胞计数可以帮助医生更准确地分析和解读血液样本,从而为患者提供更准确的诊断和治疗方案。这有助于提高医疗质量和患者满意度。

综上所述,使用目标检测对血细胞计数具有重要的意义,可以提高计数的准确性和效率,为医生提供更可靠的诊断依据,有助于提高医疗质量。

本文介绍使用yolov8进行血细胞检测的方法,其效果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

本文使用的数据集是BCCD数据集,该数据集包含3个类别:白细胞(WBC)、红细胞(RBC)和血小板(Platelets)。该数据集共364张图片,其中训练集包含205张图片,验证集包含87张图片,测试集包含72张图片。

示例图片如下:

该数据集为VOC格式,本文提供转换好的BCCD数据集YOLO8格式,可以直接用于训练Yolov8模型。BCCD-yolov8数据集

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加bccd.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/medical/BCCD-yolov8  # dataset root dir
train: images/train  # train images (relative to 'path') 118287 images
val: images/val  # val images (relative to 'path') 5000 images
test: images/test  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

# Classes
names:
  0: WBC
  1: RBC
  2: Platelets

2、修改模型配置文件

新建ultralytics/cfg/models/medical/yolov8.yaml ,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 3  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=medical_output name=bccd_yolo8 exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/cfg/models/medical/yolov8.yaml  data=ultralytics/cfg/datasets/bccd.yaml

4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val model=medical_output/bccd_yolo8/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/bccd.yaml

其精度如下:

# Ultralytics YOLOv8.0.222 🚀 Python-3.9.18 torch-2.1.2+cu118 CUDA:0 (NVIDIA GeForce RTX 4090, 24210MiB)
# YOLOv8 summary (fused): 168 layers, 3006233 parameters, 0 gradients, 8.1 GFLOPs
# val: Scanning /home/yq/aitools/datasets/medical/BCCD-yolov8/labels/val.cache... 87 images, 0 backgrounds, 0 corrupt: 100%|██████████| 87/87 [00:00<?, ?it/s]
#                  Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 6/6 [00:10<00:00,  1.81s/it]
#                    all         87       1137      0.833      0.901      0.908      0.612
#                    WBC         87         87      0.971          1      0.987      0.776
#                    RBC         87        967      0.745      0.832       0.86      0.604
#              Platelets         87         83      0.783       0.87      0.878      0.456
# Speed: 2.3ms preprocess, 6.2ms inference, 0.0ms loss, 6.4ms postprocess per image

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO
 
# 加载预训练的YOLOv8n模型
model = YOLO('weights/best.pt')
 
image_path = 'BloodImage_00014.jpg'
results = model(image_path)  # 结果列表
 
# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

本文提供训练好的权重以及推理代码:【BCCD_yolov8训练结果及预测代码】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1376154.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据在内存中的存储(C语言)

​ ✨✨ 欢迎大家来到贝蒂大讲堂✨✨ ​ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; ​ 所属专栏&#xff1a;C语言学习 ​ 贝蒂的主页&#xff1a;Betty‘s blog 引言 ​ 我们早就学完基本的数据类型&#xff0c;那这些数据类型…

Linux系统的由来、特点、以及发行版本

Linux系统 Linux 系统主要被应用于服务器端、嵌入式开发和 PC 桌面 3 大领域&#xff0c;其中服务器端领域是重中之重。例如&#xff0c;我们熟知的大型、超大型互联网企业&#xff08;百度、腾讯、Sina、阿里等&#xff09;都在使用Linux 系统作为其服务器端的程序运行平台&a…

记录一次华为云服务器扩容系统磁盘

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 1. 扩容步骤 1.1 在华为云控制台操作磁盘扩容 1.2 服务器上操作扩容步骤 1&#xff09;fdisk -l 查看扩容情况&#xff0c;确认…

深入探讨:开发连锁餐饮APP的关键技术要点

时下&#xff0c;开发一款功能强大、用户友好的连锁餐饮APP成为许多餐饮企业的当务之急。在本文中&#xff0c;我们将深入探讨开发连锁餐饮APP的关键技术要点&#xff0c;涵盖了前端、后端以及数据库等方面。 一、前端开发 前端是用户与APP交互的入口&#xff0c;因此设计良好…

锂电池的电压和容量怎么计算?

锂电池组是由电池单体&#xff08;电芯&#xff09;通过串并联来组成 1、串联(S)增加电压&#xff0c;容量不变。 例如&#xff1a;1个磷酸铁锂电池的额定电压为3.2V&#xff0c;容量为4000mAH&#xff0c;将10个磷酸铁锂电芯串联&#xff0c;电池组电压&#xff1a;3.2v*10&a…

pytorch11:模型加载与保存、finetune迁移训练

目录 一、模型加载与保存1.1 序列化与反序列化概念1.2 pytorch中的序列化与反序列化1.3 模型保存的两种方法1.4 模型加载两种方法 二、断点训练2.1 断点保存代码2.2 断点恢复代码 三、finetune3.1 迁移学习3.2 模型的迁移学习3.2 模型微调步骤3.2.1 模型微调步骤3.2.2 模型微调…

编码器与解码器LLM全解析:掌握NLP核心技术的关键!

让我们深入了解&#xff1a;基于编码器和基于解码器的模型有什么区别&#xff1f; 编码器与解码器风格的Transformer 从根本上说&#xff0c;编码器和解码器风格的架构都使用相同的自注意力层来编码词汇标记。然而&#xff0c;主要区别在于编码器旨在学习可以用于各种预测建模…

BP神经网络(公式推导+举例应用)

文章目录 引言M-P神经元模型激活函数多层前馈神经网络误差逆传播算法缓解过拟合化结论实验分析 引言 人工神经网络&#xff08;Artificial Neural Networks&#xff0c;ANNs&#xff09;作为一种模拟生物神经系统的计算模型&#xff0c;在模式识别、数据挖掘、图像处理等领域取…

TYPE-C接口取电芯片介绍和应用场景

随着科技的发展&#xff0c;USB PDTYPE-C已经成为越来越多设备的充电接口。而在这一领域中&#xff0c;LDR6328Q PD取电芯片作为设备端协议IC芯片&#xff0c;扮演着至关重要的角色。本文将详细介绍LDR6328Q PD取电芯片的工作原理、应用场景以及选型要点。 一、工作原理 LDR63…

MySQL——性能优化与关系型数据库

文章目录 什么是性能&#xff1f;什么是关系型数据库&#xff1f;数据库设计范式 常见的数据库SQL语言结构化查询语言的六个部分版本 MySQL数据库故事历史版本5.6/5.7差异5.7/8.0差异 什么是性能&#xff1f; 吞吐与延迟&#xff1a;有些结论是反直觉的&#xff0c;指导我们关…

芯课堂 | 如何配置SWM系列系统时钟?

如何配置SWM系列 系统时钟&#xff1f; 华芯微特科技有限公司SWM系列芯片可通过软件配置改变时钟的速度&#xff0c;可以让我们的设计更加灵活,频率可选空间也更加广泛&#xff0c;用户可以根据自己的实际需求配置需要的系统时钟。为了让用户能够更简单的使用这一功能&#xf…

java导出word套打

这篇文档手把手教你完成导出word套打&#xff0c;有这个demo&#xff0c;其他word套打导出都通用。 1、主要依赖 <!--hutool--><dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.3.0</ve…

为什么要做FP独立站?FP独立站有哪些优势?

近年来&#xff0c;跨境电商的商家们面临越来越大的平台政策压力&#xff0c;商家们纷纷把眼光聚焦到独立站上&#xff0c;眼下独立站已经成为出海卖家的标配。 特别是想做FP商品的卖家&#xff0c;相对于亚马逊平台&#xff0c;独立站才是你们的最终出路... 那么&#xff0c;问…

低代码平台可以开发哪些软件系统

在当今数字化时代&#xff0c;企业管理系统的开发已成为各行各业中不可或缺的一环。然而&#xff0c;传统的软件开发过程往往复杂且耗时&#xff0c;难以满足快速变化的市场需求。低代码平台的出现为企业管理系统的开发带来了革命性的变革。本文将探讨低代码平台在企业管理系统…

菱形以及各种组合图形讲解(*#@¥$)

引言&#xff1a; ***形对于新手了解循环以及嵌套循环帮助是非常大的。&#xff08;以下的题各题之间有关联&#xff09; 我们最终目的&#xff0c;就是会编程写菱形&#xff1b;看下面的图片 解题思路&#xff1a;运用拆分法&#xff0c;我们将菱形分为4个部分&#xff0c;看…

MySQL一主一从读写分离

​ MySQL主从复制 一、主从复制概念 主从复制是指将主数据库的DDL和DML操作通过二进制日志传到从服务器中&#xff0c;然后在从服务器上对这些日志重新执行也叫重做&#xff0c;从而使得从数据库和主库的数据保持同步。 MySQL支持一台主库同时向多台从库进行赋值&#xff0c;从…

Halcon实例:提取图像的纹理特征

Halcon实例&#xff1a;提取图像的纹理特征 举例说明&#xff0c;输入的是一幅灰度图像&#xff0c;分别选取其中两个矩形区域的灰度图像&#xff0c;分析其灰度变化。首先选取灰度变化较为明显的矩形1&#xff0c;然后选取灰度变化比较平滑的矩形2&#xff0c;生成灰度共生矩…

AD软件与其他EDA软件工程的问题汇总

1:如何在AD中使用eagle工程 在ad中打不开原理图&#xff0c;要使用导入功能,转化为ad的文件后&#xff0c;就可以打开了 2:打开旧版本的Protel文件 有时候新版本的AD打不开以前Protel的PCB文件&#xff0c;可以在DXP菜单下的Extension下进行配置&#xff08;Configure&…

高效降压控制器FP7132XR:为高亮度LED提供稳定可靠的电源

目录 一. FP7132概述 二. 驱动电路&#xff1a;FP7132 三. FP7132应用 高亮度LED作为新一代照明技术的代表&#xff0c;已经广泛应用于各种领域。然而&#xff0c;高亮度LED的工作电压较低&#xff0c;需要一个高效降压控制器来为其提供稳定可靠的电源。在众多降压控制器…

【AI大模型应用开发】1.0 Prompt Engineering(提示词工程)- 典型构成、原则与技巧,代码中加入Prompt

从这篇文章开始&#xff0c;我们就正式开始学习AI大模型应用开发的相关知识了。首先是提示词工程&#xff08;Prompt Engineering&#xff09;。 文章目录 0. 什么是提示词&#xff08;Prompt&#xff09;1. 为什么Prompt会起作用 - 大模型工作原理2. Prompt的典型构成、原则与…