BP神经网络(公式推导+举例应用)

news2024/11/18 3:43:19

文章目录

      • 引言
      • M-P神经元模型
      • 激活函数
      • 多层前馈神经网络
      • 误差逆传播算法
      • 缓解过拟合化
      • 结论
      • 实验分析

引言

人工神经网络(Artificial Neural Networks,ANNs)作为一种模拟生物神经系统的计算模型,在模式识别、数据挖掘、图像处理等领域取得了显著的成功。其中,BP神经网络(Backpropagation Neural Network,BPNN)作为一种常见的前馈式神经网络,以其在模式学习和逼近函数方面的优越性受到广泛关注。BP神经网络不仅能够处理非线性关系,还能够通过训练不断调整网络参数,实现对复杂模型的逼近,具有较强的自适应性和泛化能力。

本文旨在深入探讨BP神经网络的基本原理和数学模型,通过对其公式的详细推导,为读者提供清晰的理论基础。此外,通过具体的举例应用,展示BP神经网络在实际问题中的有效性和应用前景。通过对BP神经网络的深入理解,我们可以更好地应用和优化该模型,推动人工智能领域的发展。

在神经网络研究的历史长河中,BP神经网络无疑是一个重要的里程碑,其不断演化和改进为解决实际问题提供了有力的工具。通过深入研究BP神经网络,我们有望更好地理解神经网络的内在机理,推动其在各个领域的广泛应用。在人工智能日益发展的今天,BP神经网络仍然是一个备受关注的研究方向,本文将为读者提供对其深入理解的途径和启发。

M-P神经元模型

在生物神经网络中,每个神经元与其他神经元相连接,当它“兴奋”时,就会向相连接的神经元发送化学物质,从而改变这些神经元内的电位;若某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经元发送化学物质。我们将上述所描述的情形抽象为下图所示(M-P神经元模型):
在这里插入图片描述
在这个模型中,神经元接受到来自 n n n个其他神经元传递过来的输入信号,这些输入信号通过带权的连接进行传递,神经元接受到的总输入值与神经元的阈值进行对比,然后通过”激活函数“处理以产生神经元的输出。

激活函数

理想中的激活函数如下图所示:
在这里插入图片描述
s g n ( x ) = { 1 , x ≥ 0 0 , x < 0 sgn(x)= \begin{cases} 1,\quad x\geq 0\\ 0, \quad x<0 \end{cases} sgn(x)={1,x00,x<0
显然“1”对应神经元兴奋、“0”对应神经元抑制。然而 s g n ( x ) sgn(x) sgn(x)数学性质不好,不具备连续性且不光滑。因此实际上我们采用 s i g m o i d sigmoid sigmoid函数作为激活函数,典型的 s i g m o i d sigmoid sigmoid函数如下图所示:
在这里插入图片描述
s i g m o i d ( x ) = 1 1 + e − x sigmoid(x)=\frac{1}{1+e^{-x}} sigmoid(x)=1+ex1
然后将许多的神经元按一定的层次连接起来,就构成了一个神经网络。

多层前馈神经网络

常见的神经网络是形如下图所示的层级结构:
在这里插入图片描述
每层神经元与下一层神经元全连接,神经元之间不存在同层连接,也不存在跨层连接。这样的网络称为多层前馈神经网络。

误差逆传播算法

给定数据集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . ( x m , y m ) } D=\{ (x_1,y_1),(x_2,y_2),...(x_m,y_m)\} D={(x1,y1),(x2,y2),...(xm,ym)} x i ∈ ℜ d , y i ∈ ℜ l x_i\in \Re^d,y_i \in \Re^l xid,yil,即输入样例由 d d d个属性描述,输出样例由 l l l维实值向量。下图给出一个拥有 d d d个输入神经元、 l l l个输出神经元、 q q q个隐层神经元的多层前反馈神经网络。其中输出层第 j j j个神经元的阈值用 θ j \theta_j θj表示,隐层第 h h h个神经元的阈值用 γ h \gamma_h γh表示。输入层第 i i i个神经元与隐层第 h h h个神经元之间的连接权为 v i h v_{ih} vih,隐层第 h h h个神经元与输出层第 j j j个神经元之间的连接权为 w h j w_{hj} whj。记隐层第 h h h个神经元接收到的输入为 α h = ∑ i = 1 d v i h x i \alpha_h=\sum_{i=1}^dv_{ih}x_i αh=i=1dvihxi,输出层第 j j j个神经元接收到的输入为 β j = ∑ h = 1 q w h j b h \beta_j=\sum_{h=1}^qw_{hj}b_h βj=h=1qwhjbh。其中 b h b_h bh为隐层第 h h h个神经元的输出。
在这里插入图片描述
对训练集 ( x k , y k ) (x_k,y_k) (xk,yk),假定神经网络的输出为 y ^ j k = ( y ^ 1 k , y ^ 1 k , . . . , y ^ l k ) \hat y_j^k=(\hat y_1^k,\hat y_1^k,...,\hat y_l^k) y^jk=(y^1k,y^1k,...,y^lk)
y ^ j k = f ( β j − θ j ) (1) \hat y_j^k=f(\beta_j-\theta_j) \tag{1} y^jk=f(βjθj)(1)
则网络在 x k , y k x_k,y_k xk,yk上的均方误差为:
E k = 1 2 ∑ j = 1 l ( y ^ j k − y j k ) 2 (2) E_k=\frac{1}{2}\sum_{j=1}^l(\hat y_j^k-y_j^k)^2 \tag{2} Ek=21j=1l(y^jkyjk)2(2)
其中 y ^ j k \hat y_j^k y^jk为神经网络模型输出, y j k y_j^k yjk为训练集实际样例输出。

故在上图网络中共有 ( d + l + 1 ) q + l (d+l+1)q+l (d+l+1)q+l个参数。BP是一个迭代学习算法,在迭代的每一轮中采用广义感知机学习规则对参数进行更新估计,任意参数 v v v的更新估计式为:
v ← v + Δ v (3) v\leftarrow v+\Delta v \tag{3} vv+Δv(3)

以上图的BP网络中隐层到输出层的连接权 w h j w_{hj} whj为例来进行推导:
BP算法基于梯度下降法,以目标的负梯度方向对参数进行调整,对误差 E k E_k Ek,给定学习率 η \eta η,有:
Δ w h j = − η ∂ E k ∂ w h j (4) \Delta w_{hj}=-\eta \frac{\partial E_k}{\partial w_{hj}} \tag{4} Δwhj=ηwhjEk(4)
我们注意到 w h j w_{hj} whj先影响到第 j j j个输出层神经元的输入值 β j \beta_j βj,再影响到输出值 y ^ j k \hat y_j^k y^jk,最终影响到 E k E_k Ek,有:
∂ E k ∂ w h j = ∂ E k ∂ y ^ j k ⋅ ∂ y ^ j k ∂ β j ⋅ ∂ β j ∂ w h j (5) \frac{\partial E_k}{\partial w_{hj}}=\frac{\partial E_k}{\partial \hat y_j^k}\cdot \frac{\partial \hat y_j^k}{\partial \beta_j}\cdot \frac{\partial \beta_j}{\partial w_{hj}} \tag{5} whjEk=y^jkEkβjy^jkwhjβj(5)

根据 β j = ∑ h = 1 q w h j h h \beta_j=\sum_{h=1}^qw_{hj}h_h βj=h=1qwhjhh的定义,显然有:
∂ β j ∂ w h j = b h (6) \frac{\partial \beta_j}{\partial w_{hj}}=b_h \tag{6} whjβj=bh(6)

又因为 s i g m o i d sigmoid sigmoid函数有一个很好的数学性质:
f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) (7) f^\prime(x)=f(x)(1-f(x)) \tag{7} f(x)=f(x)(1f(x))(7)

根据式子(1)和(2),有:
g j = − ∂ E k ∂ y ^ j k ⋅ ∂ y ^ j k ∂ β j = − ( y ^ j k − y j k ) f ′ ( β j − θ j ) = y ^ j k ( 1 − y ^ j k ) ( y j k − y ^ j k ) (8) \begin{align*} g_j & = -\frac{\partial E_k}{\partial \hat y_j^k}\cdot \frac{\partial \hat y_j^k}{\partial \beta_j} \\ & = -(\hat y_j^k-y_j^k)f^\prime(\beta_j-\theta_j) \\ & = \hat y_j^k(1-\hat y_j^k)(y_j^k-\hat y_j^k) \end{align*} \tag{8} gj=y^jkEkβjy^jk=(y^jkyjk)f(βjθj)=y^jk(1y^jk)(yjky^jk)(8)
其中 E k = 1 2 ∑ j = 1 l ( y ^ j k − y j k ) 2 E_k=\frac{1}{2}\sum_{j=1}^l(\hat y_j^k-y_j^k)^2 Ek=21j=1l(y^jkyjk)2,那么 ∂ E k ∂ y ^ j k = y ^ j k − y j k \frac{\partial E_k}{\partial \hat y_j^k}=\hat y_j^k-y_j^k y^jkEk=y^jkyjk y ^ j k = f ( β j − θ j ) \hat y_j^k=f(\beta_j-\theta_j) y^jk=f(βjθj),那么 ∂ y ^ j k ∂ β j = f ′ ( β j − θ j ) = f ( β j − θ j ) ⋅ ( 1 − f ( β j − θ j ) ) = y ^ j k ⋅ ( 1 − y ^ j k ) \frac{\partial \hat y_j^k}{\partial \beta_j}=f^\prime(\beta_j-\theta_j)=f(\beta_j-\theta_j)\cdot(1-f(\beta_j-\theta_j))=\hat y_j^k\cdot (1-\hat y_j^k) βjy^jk=f(βjθj)=f(βjθj)(1f(βjθj))=y^jk(1y^jk)

将(6)和(8)带入(5)中有:
∂ E k ∂ w h j = g j ⋅ b h (9) \frac{\partial E_k}{\partial w_{hj}}=g_j\cdot b_h \tag{9} whjEk=gjbh(9)

再将(9)带入(4)中,得到BP算法 中关于 w h j w_{hj} whj的更新公式:
Δ w h j = − η g j b h (10) \Delta w_{hj}=-\eta g_jb_h \tag{10} Δwhj=ηgjbh(10)

同理可得:
Δ θ j = − η g j (11) \Delta\theta_j=-\eta g_j \tag{11} Δθj=ηgj(11)
Δ v i h = η e h x i (12) \Delta v_{ih}=\eta e_hx_i \tag{12} Δvih=ηehxi(12)
Δ γ h = − η e h (13) \Delta \gamma_h=-\eta e_h \tag{13} Δγh=ηeh(13)
其中
e h = − ∂ E k ∂ b h ⋅ ∂ b h ∂ α h = − ∑ j = 1 l ∂ E k ∂ β j ⋅ ∂ β j ∂ b h f ′ ( α h − γ h ) = ∑ j = 1 l w h j g j f ′ ( α h − γ h ) = b h ( 1 − b h ) ∑ j = 1 l w h j g j (14) \begin{align*} e_h & = -\frac{\partial E_k}{\partial b_h}\cdot \frac{\partial b_h}{\partial \alpha_h} \\ & = -\sum_{j=1}^l \frac{\partial E_k}{\partial \beta_j}\cdot\frac{\partial \beta_j}{\partial b_h}f^\prime(\alpha_h-\gamma_h) \\ & = \sum_{j=1}^lw_{hj}g_jf^\prime(\alpha_h-\gamma_h) \\ & = b_h(1-b_h)\sum_{j=1}^lw_{hj}g_j \end{align*} \tag{14} eh=bhEkαhbh=j=1lβjEkbhβjf(αhγh)=j=1lwhjgjf(αhγh)=bh(1bh)j=1lwhjgj(14)

其中 b h b_h bh是隐层神经元的输出 b h = f ( α h − γ h ) b_h=f(\alpha_h-\gamma_h) bh=f(αhγh) γ h \gamma_h γh是隐层神经元的阈值, α h \alpha_h αh是隐层神经元的输入。
直到所有参数调整至累计误差最小即:
E m i n = 1 m ∑ k = 1 m E k (15) E_{min}=\frac{1}{m}\sum_{k=1}^mE_k \tag{15} Emin=m1k=1mEk(15)

缓解过拟合化

由于BP神经网络强大的表示能力,BP神经网络经常遭遇过拟合化,其训练误差持续降低,但测试误差却可能上升。共有两种策略来缓解BP网络的过拟合化。

  • 早停:基本思想是在训练过程中监测验证集(一部分未参与训练的数据)上的性能,并在验证集性能达到最优时停止训练,而不是继续训练直到训练误差降为零。
  • 正则化:正则化通过修改损失函数,向优化过程中引入额外的惩罚项,从而限制模型的复杂性。这有助于防止神经网络对训练数据过度拟合。在神经网络中,L2(范数) 正则化的损失函数,则误差目标函数为:
    E = λ 1 m ∑ k = 1 m E k + ( 1 − λ ) ∑ i w i 2 (16) E=\lambda\frac{1}{m}\sum_{k=1}^mE_k+(1-\lambda)\sum_{i}w_i^2 \tag{16} E=λm1k=1mEk+(1λ)iwi2(16)
    其中 λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ(0,1),用来对经验风险和结构风险进行折中处理。其中经验风险为 1 m ∑ k = 1 m E k \frac{1}{m}\sum_{k=1}^mE_k m1k=1mEk,结构风险为 ∑ i w i 2 \sum_{i}w_i^2 iwi2

结论

在神经网络领域,BP神经网络是一种重要的前馈神经网络,以其在模式学习和逼近函数方面的优越性而备受关注。本文深入探讨了BP神经网络的基本原理和数学模型,通过对其公式的详细推导,为读者提供了清晰的理论基础。

文章首先介绍了M-P神经元模型,将其抽象为神经网络的基本组成单元。激活函数的选择是神经网络设计中关键的一步,文中提到了理想中的激活函数以及实际中常用的 s i g m o i d sigmoid sigmoid函数。

多层前馈神经网络的结构被详细介绍,说明了其层级结构和连接方式。这种结构的神经网络被广泛应用于各个领域,能够处理非线性关系,通过训练调整网络参数,实现对复杂模型的逼近,具有较强的自适应性和泛化能力。

误差逆传播算法是BP神经网络训练的核心,文章通过数学推导详细解释了权重和阈值的更新过程。梯度下降法是其中的关键步骤,通过计算误差对参数的偏导数,实现对参数的调整。

然后,文章提到了BP神经网络容易面临的问题之一,即过拟合。为了缓解过拟合,介绍了两种常用的方法:早停和正则化。早停通过在训练过程中监测验证集性能,及时停止训练,避免过度拟合。正则化通过修改损失函数引入额外的惩罚项,限制模型复杂性,有助于防止神经网络对训练数据过度拟合。

实验分析

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt

# 读入数据集
data = pd.read_csv('data/predict_room_price.csv')

在这里插入图片描述
进行数据的预处理

# 特征和标签
X = data.drop('Price', axis=1)
y = data['Price']

# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分数据集
X_train, X_temp, y_train, y_temp = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
X_valid, X_test, y_valid, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)

构建神经网络模型

# 创建BP神经网络模型
model = MLPRegressor(hidden_layer_sizes=(20, 20), max_iter=1000, random_state=42, alpha=0.01, learning_rate='adaptive')

训练、预测并评估模型性能

# 训练模型
model.fit(X_train, y_train)

# 在验证集上预测
y_valid_pred = model.predict(X_valid)


# 评估模型性能
valid_loss = mean_squared_error(y_valid, y_valid_pred)
print(f'Validation Loss: {valid_loss}')

# 在测试集上预测
y_test_pred = model.predict(X_test)

# 评估模型性能
test_loss = mean_squared_error(y_test, y_test_pred)
print(f'Test Loss: {test_loss}')

# 绘制损失曲线
plt.plot(model.loss_curve_)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss Curve')
plt.show()
Validation Loss: 429.78130878683345
Test Loss: 436.7118813730095

在这里插入图片描述

residuals = y_test - y_test_pred
plt.scatter(y_test, residuals)
plt.axhline(y=0, color='r', linestyle='--')
plt.xlabel('True Values')
plt.ylabel('Residuals')
plt.title('Residuals Plot on Test Set')
plt.show()

在这里插入图片描述

from sklearn.metrics import r2_score

r2_valid = r2_score(y_valid, y_valid_pred)
print(f'R2 Score on Validation Set: {r2_valid}')

r2_test = r2_score(y_test, y_test_pred)
print(f'R2 Score on Test Set: {r2_test}')
R2 Score on Validation Set: 0.9939169086519464
R2 Score on Test Set: 0.9934083540996065

由上述评价指标可知:

  • 残差图:

    • 散点在区间[-80, 80]内,说明模型的预测相对较为准确,大多数样本的预测误差在这个范围内。
    • 点集中在[-20, 20]上,表示大部分样本的残差(实际值与预测值之差)都集中在这个范围内,这也表明模型的整体性能较好。
  • Validation Loss 和 Test Loss:非常低的Validation Loss和Test Loss,说明模型在验证集和测试集上都取得了很好的性能。这表明模型对数据的拟合效果很好,预测值与实际值之间的误差很小。

  • R2 Score on Validation Set 和 Test Set:非常接近于1的R2 Score,表明模型对于验证集和测试集的解释方差非常高。R2 Score是一个用于评估模型拟合程度的指标,接近1表示模型能够很好地解释目标变量的变异性。

总体来说,根据残差图、Validation Loss、Test Loss以及R2 Score的结果,模型表现出色,能够很好地拟合数据并具有较高的泛化能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1376143.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TYPE-C接口取电芯片介绍和应用场景

随着科技的发展&#xff0c;USB PDTYPE-C已经成为越来越多设备的充电接口。而在这一领域中&#xff0c;LDR6328Q PD取电芯片作为设备端协议IC芯片&#xff0c;扮演着至关重要的角色。本文将详细介绍LDR6328Q PD取电芯片的工作原理、应用场景以及选型要点。 一、工作原理 LDR63…

MySQL——性能优化与关系型数据库

文章目录 什么是性能&#xff1f;什么是关系型数据库&#xff1f;数据库设计范式 常见的数据库SQL语言结构化查询语言的六个部分版本 MySQL数据库故事历史版本5.6/5.7差异5.7/8.0差异 什么是性能&#xff1f; 吞吐与延迟&#xff1a;有些结论是反直觉的&#xff0c;指导我们关…

芯课堂 | 如何配置SWM系列系统时钟?

如何配置SWM系列 系统时钟&#xff1f; 华芯微特科技有限公司SWM系列芯片可通过软件配置改变时钟的速度&#xff0c;可以让我们的设计更加灵活,频率可选空间也更加广泛&#xff0c;用户可以根据自己的实际需求配置需要的系统时钟。为了让用户能够更简单的使用这一功能&#xf…

java导出word套打

这篇文档手把手教你完成导出word套打&#xff0c;有这个demo&#xff0c;其他word套打导出都通用。 1、主要依赖 <!--hutool--><dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.3.0</ve…

为什么要做FP独立站?FP独立站有哪些优势?

近年来&#xff0c;跨境电商的商家们面临越来越大的平台政策压力&#xff0c;商家们纷纷把眼光聚焦到独立站上&#xff0c;眼下独立站已经成为出海卖家的标配。 特别是想做FP商品的卖家&#xff0c;相对于亚马逊平台&#xff0c;独立站才是你们的最终出路... 那么&#xff0c;问…

低代码平台可以开发哪些软件系统

在当今数字化时代&#xff0c;企业管理系统的开发已成为各行各业中不可或缺的一环。然而&#xff0c;传统的软件开发过程往往复杂且耗时&#xff0c;难以满足快速变化的市场需求。低代码平台的出现为企业管理系统的开发带来了革命性的变革。本文将探讨低代码平台在企业管理系统…

菱形以及各种组合图形讲解(*#@¥$)

引言&#xff1a; ***形对于新手了解循环以及嵌套循环帮助是非常大的。&#xff08;以下的题各题之间有关联&#xff09; 我们最终目的&#xff0c;就是会编程写菱形&#xff1b;看下面的图片 解题思路&#xff1a;运用拆分法&#xff0c;我们将菱形分为4个部分&#xff0c;看…

MySQL一主一从读写分离

​ MySQL主从复制 一、主从复制概念 主从复制是指将主数据库的DDL和DML操作通过二进制日志传到从服务器中&#xff0c;然后在从服务器上对这些日志重新执行也叫重做&#xff0c;从而使得从数据库和主库的数据保持同步。 MySQL支持一台主库同时向多台从库进行赋值&#xff0c;从…

Halcon实例:提取图像的纹理特征

Halcon实例&#xff1a;提取图像的纹理特征 举例说明&#xff0c;输入的是一幅灰度图像&#xff0c;分别选取其中两个矩形区域的灰度图像&#xff0c;分析其灰度变化。首先选取灰度变化较为明显的矩形1&#xff0c;然后选取灰度变化比较平滑的矩形2&#xff0c;生成灰度共生矩…

AD软件与其他EDA软件工程的问题汇总

1:如何在AD中使用eagle工程 在ad中打不开原理图&#xff0c;要使用导入功能,转化为ad的文件后&#xff0c;就可以打开了 2:打开旧版本的Protel文件 有时候新版本的AD打不开以前Protel的PCB文件&#xff0c;可以在DXP菜单下的Extension下进行配置&#xff08;Configure&…

高效降压控制器FP7132XR:为高亮度LED提供稳定可靠的电源

目录 一. FP7132概述 二. 驱动电路&#xff1a;FP7132 三. FP7132应用 高亮度LED作为新一代照明技术的代表&#xff0c;已经广泛应用于各种领域。然而&#xff0c;高亮度LED的工作电压较低&#xff0c;需要一个高效降压控制器来为其提供稳定可靠的电源。在众多降压控制器…

【AI大模型应用开发】1.0 Prompt Engineering(提示词工程)- 典型构成、原则与技巧,代码中加入Prompt

从这篇文章开始&#xff0c;我们就正式开始学习AI大模型应用开发的相关知识了。首先是提示词工程&#xff08;Prompt Engineering&#xff09;。 文章目录 0. 什么是提示词&#xff08;Prompt&#xff09;1. 为什么Prompt会起作用 - 大模型工作原理2. Prompt的典型构成、原则与…

ubuntu20.04 deepstream 6.3安装

1.基础环境gstreamer sudo apt install \ libssl-dev \ libgstreamer1.0-0 \ gstreamer1.0-tools \ gstreamer1.0-plugins-good \ gstreamer1.0-plugins-bad \ gstreamer1.0-plugins-ugly \ gstreamer1.0-libav \ libgstreamer-plugins-base1.0-dev \ libgstrtspserver-1.0-0 …

微信小程序开发学习笔记《8》tabBar

微信小程序开发学习笔记《8》tabBar 博主正在学习微信小程序开发&#xff0c;希望记录自己学习过程同时与广大网友共同学习讨论。tabBar官方文档 tabBar这一节还是相当重要的。 一、什么是tabBar tabBar是移动端应用常见的页面效果&#xff0c;用于实现多页面的快速切换。小…

第十四章JSON

第十四章JSON 1.什么是JSON2.JSON的定义和访问3.JSON在JavaScript中两种常用的转换方式4.JavaBean和JSON的相互转换5.List集合和JSON的相互转换6.map集合和JSON的相互转换 1.什么是JSON 2.JSON的定义和访问 JSON的定义 JSON的类型是一个Object类型 JSON的访问 我们要…

kafka下载安装部署

Apache kafka 是一个分布式的基于push-subscribe的消息系统&#xff0c;它具备快速、可扩展、可持久化的特点。它现在是Apache旗下的一个开源系统&#xff0c;作为hadoop生态系统的一部分&#xff0c;被各种商业公司广泛应用。它的最大的特性就是可以实时的处理大量数据以满足各…

详解如何撰写一个基础的技术交底书

大家好,我是英子老师。作为一名知识产权专家,深耕于专利行业十余年,具有丰富的专利工作经验:曾在大型专利代理机构从事专利代理工作、专利质检工作(抽查代理机构的专利代理人的撰写质量并评分);之后在知名上市企业、行业龙头企业担任高级专利工程师的职位,主要工作内容…

使用Flash_Download_Tool下载PlatformIO生成的bin程序到ESP32

使用Flash_Download_Tool下载PlatformIO生成的bin程序到ESP32 来源 当我们没有PlatformIO环境时&#xff0c;还要下载PlatformIO生成的程序时&#xff0c;可以使用Flash_Download_Tool工具下载。 说明 使用PlatformIO时&#xff0c;用cmd终端命令下载程序pio run -v -t upl…

MySQL面试题 | 01.精选MySQL面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

响应式Web开发项目教程(HTML5+CSS3+Bootstrap)第2版 例3-1 CSS3过渡

代码 <!doctype html> <html> <head> <meta charset"utf-8"> <title>CSS3 过渡</title> <style> /*显示*/ .box {width: 100px;height: 100px;background-color: #eee;/*透明度*/opacity: 1;/*过渡*/transition: 3s; } /…