论文的未来走向及创新(1)

news2025/1/11 19:47:28

论文题目

Zero-Shot Learning across Heterogeneous Overlapping Domains

基准方法

  • Naïve Bayes (Unigram)

    • P ( u t t e r a n c e ∣ d o m a i n ) P(utterance | domain) P(utterancedomain) is modeled with Naïve Bayes model with features being word unigrams in the utterance.
  • Naïve Bayes (Unigram + Bigram)

    • Same as above but word bigrams are added as features in addition to unigrams。
  • Language Model

    • A trigram language model is used per
      domain to model P(utterance | domain). Kneser-Ney
      smoothing for n-gram backoff has been applied.
  • . Embeddings k-NN:

    • K-NN using intent embeddings from a classifier trained on data excluding the zero-shot partition .
  • a加粗样式 vocabulary size of 10,000 unique words

  • Words not included in the vocabulary are mapped to a special rare word token, so their counts are shared per domain model.

  • Each of domain consists of multiple intents,

  • they are more homogeneous and therefore easier to model
    (更异构,因此更加容易的取建模)

结论和未来工作

本文工作

  • 引入 c l a s s a t t r i b u t e s class attributes classattributes : a generic framework for achiev-
    ing zero-shot language understanding
  • We have also demonstrated a flexible neural network architecture to perform inference over classes never encountered in training
  • (256-dimensional compared to 10k-100k for n-gram baselines
  • replace all domain-specific models with a single joint model.

We introduced class attributes, a generic framework for achiev-
ing zero-shot language understanding. We have also demon-
strated a flexible neural network architecture to perform infer-
ence over classes never encountered in training. The model
improves upon an averaged-embeddings baseline and performs
at par with generative models while requiring much smaller
vectors to be stored per domain (256-dimensional compared
to 10k-100k for n-gram baselines) and also shows promise to
replace all domain-specific models with a single joint model.
The zero-shot architecture also provides a general framework
for incorporating contextual conditioning such as personalized
features into the model.

未来工作

  • Future work can explore techniques that better map from feature spaces in one modality to another
    • Compact Bilinear Pooling popularized by[9]

    • incorporating syntactic information into the model via subword embeddings [18]

    • replacing the dot product based scoring function with a learned
      model as has recently been popularized by adversarial methods[10]

    • In the context of Spoken Language Understanding, we can augment the encoders with context features and generalize them to consume ASR lattices and developer grammars [11]

Future work can explore techniques that better map from
feature spaces in one modality to another, such as Compact
Bilinear Pooling popularized by [9], incorporating syntactic
information into the model via subword embeddings [18], or
replacing the dot product based scoring function with a learned
model as has recently been popularized by adversarial methods
[10]. In the context of Spoken Language Understanding, we can
augment the encoders with context features and generalize them
to consume ASR lattices and developer grammars [11].

总结

先将各个论文创新点,全部都罗列出来,整理论文的基准方法及未来工作,慢慢的将其打磨透彻,研究彻底都行啦的理由与打算,后期租台电脑时候,开始正式搞研究。

  • 会挖掘自己的创新点,慢慢的将各种创新点,设计自己的网络架构,设计的自己网络架构。

论文题目

题目

Learn to Adapt for Generalized Zero-Shot Text Classification

基准方法

在这里插入图片描述

Datasets

  • Intent Classification Datasets.
    • SNIPS-SLU
    • SMP-18
    • ATIS
    • CLINC
  • Question Classification Dataset
    在这里插入图片描述

Baselines Methods

  • Supervised Learning Methods.
    • BiLSTM
    • BERT
  • Metric Learning Methods
    • Metric-based embedding methods are commonly used as baselines for GZSL
    • EucSoftmax
    • Zero-shot DNN
    • CosT
  • SOTA Methods
    • ReCapsNet
    • SEG (Yan et al., 2020) is an outlier detection approach
    • RIDE

未来工作与展望

we select a representative case “when is
it time for a tire change” and show its atten-
tion weights used as calibration parameters in ©.
The case is still misclassified after the prototype
adaptation due that the common word “time” and
“change” also appear in seen classes. After the
sample adaptation, however, it can be seen that
the word “tire” which is a keyword for classifying,
gets the highest attention while the other confusing
words do not. This result suggests that calibrating
using attention weights helps acquire a prototype-
aware representation that guides the sample adap-
tation.

  • In particular, it efficiently alleviated the bias towards seen classes by utilizing both prototype adaptation and sample adaptation
  • Experiments on five text classification datasets validated that our model achieved compelling results on both seen classes and unseen classes meanwhile was capable of fast adapting to new classes

未来工作

As the partition of seen and unseen classes is fixed
in previous experiments, to study the robustness
of the proposed adaptation method, we conduct
the experiment across unseen class sets of differ-
ent scales on CLINC datase
t. Specifically, we se-
lect 70 classes as seen classes and 10 classes as
validating unseen classes
. The number of testing
unseen classes is varied from 1 to 70, which are
randomly sampled from the remaining 70 classes.
Each experiment is repeated 50 times with different
sampling sets for a more stable result. Figure 3
(a)
shows the HM accuracy on all classes as the num-
ber of the unseen classes increases. We can see that
our LTA model outperforms the metric learning
baseline and ablation models in all cases, where
the improved performance is mainly attributed to
the improvements on unseen classes as shown in
Figure 3 (b). These results suggest that our adap-
tation method is robust and effective for adapting
to increasing new classes as well as improving the
overall performance of all classe
s.

总结

  • 会慢慢的将各种网络架构全部都搞清楚,慢慢的将会自己设计自己的网络架构,慢慢的将各种方法都搞清楚, 学习研究透彻。研究彻底。

参考连接

Zero-Shot Learning across Heterogeneous Overlapping Domains
Learn to Adapt for Generalized Zero-Shot Text Classification

经验

明天开始一天一篇,并将各种网络架构全部设计完整,慢慢的将各种网络架构全部设计完整。会设计自己的网络架构,锻炼自己的架构思维。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/137378.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

centos7修改默认yum源为国内源

centos7修改默认yum源为国内源 文章目录centos7修改默认yum源为国内源操作系统环境信息修改yum源步骤修改后效果yum下载的默认镜像地址速度很慢,一般会更改镜像源为国内的镜像地址,比如163,阿里云等,本文介绍下修改yum源的步骤。操…

【回答问题】ChatGPT上线了!给我推荐20个比较流行的图像分割模型!

给我推荐20个比较流行的图像分割模型 U-Net Mask R-CNN FCN DeepLab PSPNet LinkNet UNet SegNet Tiramisu DenseASPP ICNet ENet DANet DenseSeg Fast-SCNN BiSeNet DUNet MaskLab Dense UNet Attention U-Net给我推荐20个比较流行的图像分割模型源码 好的,下面是…

JMeter自定义函数

JMeter二次开发需求一般集中在2个方向:针对请求类,即需要和服务器进行通信的,我们一般是做java请求的二次开发针对数据处理类型,是不需要和服务器进行通信,是在客户端完成的,一般是做JMeter的自定义函数除了…

【谷粒商城基础篇】商品服务开发:属性分组、平台属性

谷粒商城笔记合集 分布式基础篇分布式高级篇高可用集群篇简介&环境搭建项目简介与分布式概念(第一、二章)基础环境搭建(第三章)整合SpringCloud整合SpringCloud、SpringCloud alibaba(第四、五章)前端知…

若依RuoYi整合短信验证码登录

背景:若依默认使用账号密码进行登录,但是咱们客户需要增加一个短信登录功能,即在不更改原有账号密码登录的基础上,整合短信验证码登录。 一、自定义短信登录 token 验证 仿照 UsernamePasswordAuthenticationToken 类&#xff0c…

使没有sudo权限的普通用户可以使用容器

一、基本思路将普通用户加入docker组二、ubuntu组管理命令1、配置文件(1)文件:/etc/group(2)权限:①超级用户可读可写②普通用户只读2、查看组(1)命令cat /etc/group(2&a…

【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例--使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】

目录RNN项目实战使用周杰伦专辑歌词训练模型并创作歌曲1.语言模型数据集预处理1.1 读取数据集1.2 建立字符索引1.3 时序数据的2种采样方式1.3.1 随机采样1.3.2 相邻采样小结2. 从零实现循环神经网络并进行训练预测2.1 one-hot向量表示2.2 初始化模型参数2.3 定义模型2.4 定义预…

2023 年更新计划

前言 2023 年,会继续更新这个 CSDN 博客了; 看了一下博客数据,有些惨不忍睹,不过之前的内容质量并不高,从头来过吧; 当初个人娱乐写的 STM32 学习笔记,莫名受欢迎,不出意外的话&am…

Spring之Bean实例化的基本流程

目录 一&#xff1a;概述 二&#xff1a;代码展示 一&#xff1a;概述 Spring容器在进行初始化时&#xff0c; 会将xml配置的<bean>的信息封装成一个BeanDefinition对象&#xff0c; 所有的 BeanDefinition存储到一个名为be…

勇闯掘金小游戏为一款多个小游戏的合集游戏,有五个关卡:找掘金、石头剪刀布、寻找藏宝图、打地鼠、抽奖。基于Vue

游戏简介 勇闯掘金小游戏为一款多个小游戏的合集游戏&#xff0c;共有五个关卡&#xff0c;分别为&#xff1a;找掘金、石头剪刀布、寻找藏宝图、打地鼠、抽奖。每个环节20分&#xff0c;满分100分。 完整代码下载地址&#xff1a;勇闯掘金小游戏 快速体验 https://ihope_to…

Acwing---730.机器人问题

机器人问题1.题目2.基本思想3.代码实现1.题目 机器人正在玩一个古老的基于 DOS 的游戏。 游戏中有 N1 座建筑——从 0 到 N 编号&#xff0c;从左到右排列。 编号为 0 的建筑高度为 0 个单位&#xff0c;编号为 i 的建筑高度为 H(i) 个单位。 起初&#xff0c;机器人在编号…

Mycat2(四)mycat2 分库分表

文章目录一、分库分表原理垂直切分&#xff1a;分库水平切分&#xff1a;分表二、分库分表环境准备示例&#xff1a;开始准备环境三、实现分库分表3.1 分库分表--广播表&#xff08;BROADCAST&#xff09;3.2 分库分表--分片表&#xff08;dbpartition、tbpartition&#xff09…

电脑录屏怎么录ppt?三个ppt录制视频的方法

PPT演示文稿是人们在日常生活和学习中常用的工具&#xff0c;它也被广泛地运用于各个方面。最近有不少朋友问小编ppt录制视频的方法&#xff0c;其实ppt录制视频的方法有很多。如果只需要录制PPT内容&#xff0c;可以用PPT自带的“屏幕录制”来录制视频就可以了&#xff0c;如果…

Day848.Copy-on-Write模式 -Java 性能调优实战

Copy-on-Write模式 Hi&#xff0c;我是阿昌&#xff0c;今天学习记录的是关于Copy-on-Write模式的内容。 Java 里 String 这个类在实现 replace() 方法的时候&#xff0c;并没有更改原字符串里面 value[]数组的内容&#xff0c;而是创建了一个新字符串&#xff0c;这种方法在…

C++GUI之wxWidgets(10)-编写应用涉及的类和方法(5)-事件处理(4)

目录自定义事件AddPendingEvent()QueueEvent()PushEventHandler()ProcessEvent()wxCommandEvent与新的事件类型一起使用自定义事件 AddPendingEvent() virtual void wxEvtHandler::AddPendingEvent ( const wxEvent & event ) 发布要稍后处理的事件。 此函数类似于Qu…

逆向-还原代码之eth (Interl 64)

// 源程序 #include <stdio.h> #define HIETH_SYSREG_BASE (0x101e0000) #define REG_RESET 0x01C // 外设控制寄存器(IP软复位控制) #define RESET_SHIFT 12 static void hieth_set_regbit(unsigned long addr, int bit, int shift) { unsigned long …

nginx学习笔记1(小d课堂)

我们进入到官网可以看到有很多个版本的nginx。 我们点击documentation&#xff0c;可以看到官方文档&#xff0c;但是这里的文档暂时还没有中文的&#xff1a; 我们这里后期会在linux上进行安装部署nginx。 而我们的nginx就是我们的反向代理服务器。 我们可以这样来配置。 我们…

栈和队列(内附模拟实现代码)

一&#xff0c;栈1.1 栈的概念栈是一种线性表&#xff08;是一种特殊的线性表&#xff09;&#xff0c;栈只允许在固定一端进行插入和删除元素。插入元素的一端称为栈顶&#xff0c;另一端称为栈底。所以栈中的数据元素满足先进后出&#xff08;First In Last Out&#xff09;的…

【数据篇】31 # 如何对海量数据进行优化性能?

说明 【跟月影学可视化】学习笔记。 渲染动态的地理位置 用随机的小圆点模拟地图的小圆点&#xff0c;实现呼吸灯效果 最简单的做法&#xff1a;先创建圆的几何顶点数据&#xff0c;然后对每个圆设置不同的参数来分别一个一个圆绘制上去。 <!DOCTYPE html> <html …

如何使用python删除一个文件?别说,还挺好用....

嗨害大家好鸭&#xff01;我是小熊猫~ 若想利用python删除windows里的文件&#xff0c;这里需要使用os模块&#xff01;那接下来就看看利用os模块是如何删除文件的&#xff01; 具体实现方法如下&#xff01; 更多学习资料:点击此处跳转文末名片获取 os.remove(path) 删除文…