强化学习第1天:马尔可夫过程

news2024/11/20 3:33:43

在这里插入图片描述

☁️主页 Nowl

🔥专栏 《强化学习》

📑君子坐而论道,少年起而行之

​​

在这里插入图片描述

一、介绍

什么是马尔可夫过程?马尔可夫过程是马尔可夫决策过程的基础,而马尔可夫决策过程便是大部分强化学习任务的抽象过程,本文将从马尔可夫过程开始,一步步带读者理解马尔可夫决策过程

二、马尔可夫过程

1.状态变化过程

我们知道强化学习是一个状态转移的过程,状态发生变化的原因可能取决于当前状态,也可能取决于先前的许多状态,我们把当前状态设为
S t S_{t} St
则下一个状态的概率与之前所有状态有关可表示为
P ( S t + 1 ) = P ( S t + 1 ∣ S t , . . . , S 1 ) P(S_{t+1}) = P(S_{t+1}|S_{t},...,S_{1}) P(St+1)=P(St+1St,...,S1)
下图为某一个状态变化过程图,箭头表示由某个状态变化到另一个状态的概率

在这里插入图片描述

2.马尔可夫性质

当且仅当某时刻的状态只取决于上一时刻的状态时,这个过程就具有马尔可夫性质,即
P ( S t + 1 ) = P ( S t + 1 ∣ S t ) P(S_{t+1}) = P(S_{t+1}|S_{t}) P(St+1)=P(St+1St)
可以知道,若某过程满足马尔可夫性质,则我们只需要知道当前状态就可以预测下一个状态,而不是要了解之前所有的状态

通俗一点可以用下图来说明
无论这两个人之前吃了什么水果,做了什么事,当12点的时候他们都会去睡觉,即睡觉这件事只与12点有关
和之前的行为没有关系

在这里插入图片描述

3.马尔可夫过程描述

我们通常用一个元组
< S , P > <S,P> <SP>
来描述一个马尔可夫过程

  • S是有限的状态集合
  • P是状态转移矩阵,它记录了状态之间变化的概率

三、马尔可夫奖励过程

1.马尔可夫奖励过程描述

我们知道马尔可夫过程可以由元组<S,P>来描述,那么马尔可夫奖励过程就可以用元组
< S , P , r , γ > <S,P,r,γ> <SPrγ>
来描述

  • r是奖励函数,r(s)即代表转移到状态s可获得的奖励
  • γ是折扣因子,取值范围为[0,1),我们将在下文感受到折扣因子的作用

2.回报

在一个马尔可夫奖励过程中,从当前状态开始,到终止状态,所有奖励之和为回报
G = R t + γ R t + 1 + γ 2 R t + 2 + . . . + γ k R t + k G = R_{t}+γR_{t+1}+γ^{2}R_{t+2}+...+γ^{k}R_{t+k} G=Rt+γRt+1+γ2Rt+2+...+γkRt+k
在这里我们可以看到折扣因子的作用了,折扣因子越接近1,就代表模型更注重长期利益,越接近0,就代表模型更注重短期利益

3.价值函数

在马尔可夫奖励过程中,一个状态的期望回报被称为这个状态的价值,价值函数即是以状态为自变量,价值为因变量的函数,定义如下
V ( s ) = E [ G t ∣ S t = s ] V(s)=E[G_{t}|S_{t}=s] V(s)=E[GtSt=s]
它表示了所有状态回报之和的一种平均,可能这里有些人对这个期望不是很理解,既然我的S固定了,那G不也就固定了吗,为什么还要加上一个期望呢,想到这点的说明有自己的思考了,S确实固定了,这时我们去看G,G这时真的是固定值吗?

在这里插入图片描述
理解了价值函数之后,我们接着往下看

4.贝尔曼方程

首先我们给出贝尔曼方程的定义
V ( s ) = r ( s ) + γ ∑ s ′ P ( s ′ ∣ s ) V ( s ′ ) V(s)=r(s)+γ\sum_{s^{'}}P(s^{'}|s)V(s^{'}) V(s)=r(s)+γsP(ss)V(s)
可以看到左边就是一个价值函数,那是怎么推导过来的呢,看以下过程,我们将价值函数拆开
V ( s ) = E [ G t ∣ S t = s ] V(s)=E[G_{t}|S_{t}=s] V(s)=E[GtSt=s]
= E [ R t + γ R t + 1 + γ 2 R t + 2 + . . . ∣ S t = s ] =E[R_{t}+γR_{t+1}+γ^{2}R_{t+2}+...|S_{t}=s] =E[Rt+γRt+1+γ2Rt+2+...∣St=s]
= E [ R t + γ ( R t + 1 + γ R t + 2 + . . . ) ∣ S t = s ] =E[R_{t}+γ(R_{t+1}+γR_{t+2}+...)|S_{t}=s] =E[Rt+γ(Rt+1+γRt+2+...)St=s]
= E [ R t + γ G t + 1 ∣ S t = s ] =E[R_{t}+γG_{t+1}|S_{t}=s] =E[Rt+γGt+1St=s]
= E [ R t + γ V ( S t + 1 ) ∣ S t = s ] =E[R_{t}+γV(S_{t+1})|S_{t}=s] =E[Rt+γV(St+1)St=s]
其中
r ( s ) = E [ R t ∣ S t = s ] r(s)=E[R_{t}|S_{t}=s ] r(s)=E[RtSt=s]
而根据条件期望的定义可以得到
γ ∑ s ′ P ( s ′ ∣ s ) V ( s ′ ) = E [ γ V ( S t + 1 ) ∣ S t = s ] γ\sum_{s^{'}}P(s^{'}|s)V(s^{'})=E[γV(S_{t+1})|S_{t}=s] γsP(ss)V(s)=E[γV(St+1)St=s]
即证贝尔曼方程
V ( s ) = r ( s ) + γ ∑ s ′ P ( s ′ ∣ s ) V ( s ′ ) V(s)=r(s)+γ\sum_{s^{'}}P(s^{'}|s)V(s^{'}) V(s)=r(s)+γsP(ss)V(s)

四、马尔可夫决策过程

1.马尔可夫决策过程描述

我们已经知道了马尔可夫过程和马尔可夫奖励过程(MDP)的描述,接下来我们描述马尔可夫决策过程(MAP),使用元组描述
< S , A , P , r , γ > <S,A,P,r,γ> <SAPrγ>

  • A是动作,这时多出来的东西可不只有动作,还有抉择做什么动作的策略
  • 此时r(s)变为了r(s,a),因为奖励此时不仅与状态有关,还与动作有关
  • 同理,P也与动作联系起来了,因此它不再是一个二维数组矩阵,而是变成了一个三维矩阵

在描述马尔可夫决策过程的元组中,我们发现了许多强化学习中的元素:状态,奖励,动作,可以看到我们逐渐与我们的目的——强化学习越来越近了!

由于新加入的动作因子所产生的策略因子,我们优化一下价值函数变为状态价值函数
V π ( s ) = E π [ G t ∣ S t = s ] V^{\pi}(s)=E_{\pi}[G_{t}|S_{t}=s] Vπ(s)=Eπ[GtSt=s]
我们把π定义为策略,则更新后的价值函数可以这样描述:从状态s出发遵循策略π可以获得的期望回报

定义好了状态价值函数,我们再来定义动作价值函数,动作价值函数是遵循策略π时,在当前状态下采取动作a能得到的期望回报
Q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] Q^{\pi}(s,a)=E_{\pi}[G_{t}|S_{t}=s,A_{t}=a] Qπ(sa)=Eπ[GtSt=sAt=a]
我们直观理解一下

在这里插入图片描述

发现了其中的区别了吗,状态价值函数的第一个状态是固定的,而动作价值函数的第一,第二个状态都是固定的,回到定义,因为动作价值函数规定了当前状态所做出的动作,所以第二个状态也是固定的

所以状态价值函数与动作价值函数的联系公式如下
V π ( s ) = ∑ a π ( a ∣ s ) Q π ( s , a ) V^{\pi}(s)=\sum_{a}\pi(a|s)Q^{\pi}(s,a) Vπ(s)=aπ(as)Qπ(sa)

展开动作价值函数的贝尔曼方程如下
Q π ( s , a ) = r ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) V π ( s ′ ) Q^{\pi}(s,a)=r(s,a)+γ\sum_{s^{'}}P(s^{'}|s,a)V^{\pi}(s^{'}) Qπ(sa)=r(sa)+γsP(ssa)Vπ(s)

2.贝尔曼期望方程

动作价值函数贝尔曼期望方程
Q π ( s , a ) = E π [ R t + γ Q π ( s ′ , a ′ ) ∣ S t = s , A t = a ] Q^{\pi}(s,a)=E_{\pi}[R_{t}+γQ^{\pi}(s^{'},a^{'})|S_{t}=s,A_{t}=a] Qπ(sa)=Eπ[Rt+γQπ(sa)St=sAt=a]
= r ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) ∑ a ′ π ( a ′ ∣ s ) Q π ( s ′ , a ′ ) =r(s,a)+γ\sum_{s^{'}}P(s^{'}|s,a)\sum_{a^{'}}\pi(a^{'}|s)Q^{\pi}(s^{'},a^{'}) =r(sa)+γsP(ssa)aπ(as)Qπ(sa)
状态价值函数贝尔曼期望方程
V π ( s ) = E π [ R t + γ V π ( s ′ ) ∣ S t = s ] V^{\pi}(s)=E_{\pi}[R_{t}+γV^{\pi}(s^{'})|S_{t}=s] Vπ(s)=Eπ[Rt+γVπ(s)St=s]
= ∑ a π ( a ∣ s ) { r ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) V π ( s ′ ) } =\sum_{a}\pi(a|s)\{r(s,a)+γ\sum_{s^{'}}P(s^{'}|s,a)V^{\pi}(s^{'})\} =aπ(as){r(sa)+γsP(ssa)Vπ(s)}
贝尔曼方程是强化学习中很重要的部分,之后很多方法都是由此推导而来,请一定好好理解并尝试推导

五、蒙特卡洛方法

1.介绍

蒙特卡洛方法的思想来自于概率论与数理统计,主要步骤是先进行重复随机抽样,然后运用概率统计方法来获得我们想要的数值特征

如下是一个简单的例子,使用蒙特卡洛方法求圆的面积,我们已知三角形的面积,则先随机选取多个点,然后就可以通过比例计算出圆形的面积

在这里插入图片描述

2.在强化学习中的应用

那么如何在强化学习中应用蒙特卡洛方法呢,我们试着求状态价值,我们知道状态价值是状态的期望回报,这个回报由许多条序列计算而来,那我们就可以选取多条序列,将通过选取的序列所算出来的期望回报近似为真正的状态价值
V π ( s ) = E π [ G t ∣ S t = s ] ≈ 1 N ∑ i N G t ( i ) V^{\pi}(s)=E_{\pi}[G_{t}|S_{t}=s]\approx\frac{1}{N}\sum^{N}_{i}G_{t}^{(i)} Vπ(s)=Eπ[GtSt=s]N1iNGt(i)

根据大数定律可以知道,当选取的序列够多时,这两个值就越近似

3.为什么要使用蒙特卡洛方法

我们要明白,虽然我们知道了求解期望的公式,但在真实情况中,很多条件是不知道的,例如不清楚某个状态的所有序列,这时我们就只能使用蒙特卡洛方法来通过局部估计总体了

最优策略

作了这么多基础铺垫,再回到强化学习上来吧,强化学习的目标就是找到一个策略,来获得最高的期望回报,从初始状态出发到达最终目的可能有很多策略,但很容易知道,一定有一个策略,得到的期望不低于其他所有策略,这个策略就是最优策略,找到它就是强化学习的目标

我们将最优策略表示为
π ∗ ( s ) \pi^{*}(s) π(s)
再定义最优状态价值函数
V ∗ ( s ) = m a x π V π ( s ) V^{*}(s)=max_{\pi}V^{\pi}(s) V(s)=maxπVπ(s)
和最优动作价值函数
Q ∗ ( s , a ) = m a x π Q π ( s , a ) Q^{*}(s,a)=max_{\pi}Q^{\pi}(s,a) Q(sa)=maxπQπ(sa)

贝尔曼最优方程

前文介绍了最重要的贝尔曼方程,这里给出它的最优形式
Q ∗ ( s , a ) = r ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) m a x a ′ Q ∗ ( s ′ , a ′ ) Q^{*}(s,a)=r(s,a)+γ\sum_{s^{'}}P(s^{'}|s,a)max_{a^{'}}Q^{*}(s^{'},a^{'}) Q(sa)=r(sa)+γsP(ssa)maxaQ(sa)
V ∗ ( s ) = m a x a ( r ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) V ∗ ( s ′ ) ) V^{*}(s)=max_{a}(r(s,a)+γ\sum_{s^{'}}P(s^{'}|s,a)V^{*}(s^{'})) V(s)=maxa(r(sa)+γsP(ssa)V(s))

在这里插入图片描述

感谢阅读,觉得有用的话就订阅下《强化学习》专栏吧,有错误也欢迎指出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1371079.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

人机交互不是人机融合智能

一、人机交互和人机融合智能是两个不同的概念 人机交互是指人类与计算机之间的信息交流和操作方式&#xff0c;包括输入和输出界面、交互技术、用户体验等方面。人机交互的目标是提供用户友好的界面和自然的交互方式&#xff0c;使人类能够与计算机更加高效地进行沟通和协作。 …

BOM简介

1.1 常用的键盘事件 1.1.1 键盘事件 键盘事件触发条件onkeydown按键被按下时触发onkeypress按键被按下时触发onkeyup按键被松开时触发 注意&#xff1a;addEventListener事件不需要加on <script>//1. keydown 按键按下的时候触发,按任意键都触发&#xff0c;也可以识…

PhpPythonC++圆类的实现(OOP)

哎......被投诉了 &#x1f62d;&#x1f62d;&#x1f62d;&#x1f62d;&#x1f62d; 其实也不是小编不更&#xff0c;这不是期末了吗&#xff08;zhaojiekou~~&#xff09;&#xff0c;而且最近学的信息收集和ctf感觉好像没找到啥能更的&#xff08;不过最经还是在考虑更一…

Java中并发下的ThreadlocalRandom

1. 背景 在看同事写的代码的时候发现代码里有很多像&#xff1a; 如果我们想要生成一个随机数&#xff0c;通常会使用Random类。但是在并发情况下Random生成随机数的性能并不是很理想&#xff0c;今天给大家介绍一下JUC包中的用于生成随机数的类–ThreadLocalRandom.&#x…

领英Linkedin自动跳转中国站点的解决方案

linkedin放弃中国市场后&#xff0c;在国内打开linkedin.com&#xff0c;会自动跳转到 linkedin.cn&#xff0c;无法与国际友人在同一个平台上联系。 按照搜到的方法尝试解决&#xff0c;包括修改浏览器默认语言、清除浏览数据、使用软路由上的插件给 linkedin.com设置从国外线…

华为 1+X《网络系统建设与运维(高级)》认证模拟实验上机试题

华为 1X《网络系统建设与运维&#xff08;高级&#xff09;》认证模拟实验上机试题 一、考试背景二、考试说明2.1考试分数说明2.2考试要求2.3考试环境介绍2.4启动考试环境2.5保存答案(非常重要) 三、考试正文3.1注意事项3.2校区内&#xff08;LAN&#xff09;3.2.1任务 1&#…

深入浅出Go语言:匿名函数的原理和实践案例

深入浅出Go语言&#xff1a;匿名函数的原理和实践案例 引言匿名函数的基础实际应用案例一实际应用案例二性能考虑最佳实践与常见错误结语 引言 在Go语言的世界里&#xff0c;有一个功能强大且灵活的编程元素值得每位开发者深入了解——匿名函数。作为Go语言核心特性之一&#…

前端-基础 表格标签 - 基本使用及表头单元格 详解

基本使用 &#xff1a; 主要作用 &#xff1a; 即 主要 用于显示&#xff0c;展示数据&#xff0c;因为它可以让数据显示的非常的规整&#xff0c;可读性非常好。 特别是后台展示数据的时候&#xff0c;能够熟练运用表格就显得很重要。 一个清爽简约的表格能够把繁杂 的…

C2-4.3.1 多个决策树——随机森林

C2-4.3.1 多个决策树——随机森林 参考链接 1、为什么要使用多个决策树——随机森林&#xff1f; 决策树的缺点&#xff1a; A small change in the data can cause a large change in the structure of the decision tree causing instability 即&#xff1a;对数据集 中…

数据库:如何取消mysql的密码

因为调试MySQL数据接口&#xff0c;总是需要输入密码很烦&#xff0c;所以决定取消mysql的root密码&#xff0c; 网上推荐的有两种方法&#xff1a; 1、mysql命令 SET PASSWORD FOR rootlocalhostPASSWORD(); 2、运行 mysqladmin 命令 mysqladmin -u root -p password …

【源码阅读】交易池txs_pool

重要接口&#xff1a; ITxsPool的实现&#xff1a; type TxsPool struct {config TxsPoolConfigchainconfig *params.ChainConfigbc common.IBlockChaincurrentState *state.IntraBlockStatependingNonces *txNoncercurrentMaxGas uint64ctx context.Context //cance…

密码学(一)

文章目录 前言一、Cryptographic Primitives二、Cryptographic Keys2.1 Symmetric key cryptography2.2 asymmetric key cryptography 三、Confidentiality3.1 Symmetric key encryption algorithms3.2 asymmetric key block ciphers3.3 其他 四、Integrity4.1 secure hashing …

【语义解析:连接自然语言与机器智能的桥梁】

语义解析&#xff1a;连接自然语言与机器智能的桥梁 语义解析技术可以提高人机交互的效率和准确性&#xff0c;在自然语言处理、数据分析、智能客服、智能家居等领域都有广泛的应用前景。特别是在大数据时代&#xff0c;语义解析能够帮助企业更快速地从大量的数据中获取有用的…

Helix QAC 2023.4 新版支持C++20语言,带来更多性能提升!

Helix QAC 2023.4 新增功能 Helix QAC 2023.4全面支持MISRA C:2023规则&#xff0c;涵盖100%的指南。此版本还加强了对C20语言的支持&#xff0c;改进了数据流分析性能&#xff0c;并在整个产品中增加了多项用户体验改进。 增强的C20支持 此版本新增了对以下语言特性的支持&a…

永久关闭Windows更新的5种方法

很多家用电脑&#xff0c;如果系统自动更新的话&#xff0c;会变得越来越卡顿&#xff0c;且硬件型号兼容也并不完美。那么我们该如何彻底关闭Win11的自动更新呢&#xff1f;以下准备了5种方法&#xff0c;您可以根据自身实际情况选择合适的方法&#xff01; 一&#xff1a;使…

imgaug库指南(13):从入门到精通的【图像增强】之旅

引言 在深度学习和计算机视觉的世界里&#xff0c;数据是模型训练的基石&#xff0c;其质量与数量直接影响着模型的性能。然而&#xff0c;获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此&#xff0c;数据增强技术应运而生&#xff0c;成为了解决这一问题的…

【SPDK】【NoF】使用SPDK实现NVMe over Fabrics Target

本文使用两台PC&#xff0c;一台做NVMe over Fabrics Target&#xff08;服务端&#xff09;&#xff0c;一台做NVMe over Fabrics initiator&#xff08;客户端&#xff09;。首先使用SoftRoCE来实现底层的rdma传输&#xff0c;然后使用SPDK来实现NVMe over Fabrics Target。 …

首家通过中国信通院数据库迁移工具专项测试,亚信安慧AntDB受到认可!

亚信安慧数据库数据同步平台经过中国信通院第17批“可信数据库”数据库迁移工具专项测试&#xff0c;成功成为首家符合《数据库迁移工具能力要求》的产品。该平台广泛适用于多种数据迁移场景&#xff0c;具备高性能实时数据处理、断点续作、一键迁移、可视化运维等核心优势。此…

Linux第22步_安装CH340驱动和串口终端软件MobaXterm

开发板输出信息通常是采用串口&#xff0c;而计算机通常是USB接口&#xff0c;为了让他们之间能够交换数据&#xff0c;我们通常采用USB转串口的转换器来实现。目前市场上的串口转换器大多是采用CH340芯片来实现的&#xff0c;因此我们需要在计算中安装一个CH340驱动程序&#…

echarts——折线图实现不同区间不同颜色+下钻/回钻功能——技能提升

echarts——折线图实现不同区间不同颜色下钻/回钻功能——技能提升 需求场景解决步骤1&#xff1a;安装echarts插件解决步骤2&#xff1a;html代码解决步骤3&#xff1a;封装option配置和initChart渲染方法解决步骤4&#xff1a;回钻功能 需求场景 最近在写后台管理系统时&…