【语义解析:连接自然语言与机器智能的桥梁】

news2025/1/16 0:25:24

语义解析:连接自然语言与机器智能的桥梁

语义解析技术可以提高人机交互的效率和准确性,在自然语言处理、数据分析、智能客服、智能家居等领域都有广泛的应用前景。特别是在大数据时代,语义解析能够帮助企业更快速地从大量的数据中获取有用的信息,从而提高决策效率。

01 语义解析的应用场景

场景一:

在一个繁忙的办公室里,李经理正在与他的团队成员进行一项重要的项目。他们需要不断地从公司的数据库中提取各种数据来支持他们的分析和决策。然而,团队成员们并非都是数据库专家,复杂的 SQL 查询语句常常让他们感到困惑和效率低下。

在这个关键时刻,李经理决定引入 NL2SQL 技术,为团队带来一种全新的数据交互体验。

NL2SQL(自然语言到 SQL)技术允许用户通过自然语言描述他们想要查询的数据,然后自动将这些描述转化为 SQL 查询语句。这对于非数据库专家来说是一个巨大的福音,因为它消除了编写复杂 SQL 语句的需要。

李经理的团队成员小王想查找去年销售额超过 100 万的所有产品。在没有 NL2SQL 之前,他可能需要花费大量时间去编写 SQL 语句,或者请教数据库专家。但现在,他只需简单地对系统说:“请给我去年销售额超过 100 万的所有产品。” NL2SQL 系统立即理解了他的需求,并将这个自然语言描述转化为相应的 SQL 查询语句,然后执行查询。

几秒钟后,小王就得到了他所需的数据,这大大节省了他的时间和精力。他不再需要担心 SQL 语句的语法和结构,也不再需要等待数据库专家的帮助。他可以专注于分析和决策,而不是纠结于数据提取的细节。

NL2SQL 不仅提高了团队的效率,还增强了团队成员与数据库之间的交互体验。它使得数据库查询变得更加直观、自然和高效,从而加速了项目的进展并提高了决策的准确性。李经理对他的这个决定感到非常满意,NL2SQL 技术为他的团队带来了实实在在的便利和价值。

场景二:

在一个繁忙的图书馆中,读者们穿梭在书架间,努力寻找他们感兴趣的书籍。图书馆管理员小杨则站在咨询台后面,不断回答着读者们关于书籍、作者和内容的各种问题。然而,随着图书馆藏书量的不断增加,她发现自己越来越难以迅速准确地回答所有问题。

在这个背景下,图书馆引入了 KBQA(知识库问答)系统,为读者和管理员带来了前所未有的便利。

KBQA 系统允许用户通过自然语言提问,并从图书馆的知识库中自动检索相关信息来回答问题。这个知识库包含了图书馆所有书籍的详细信息,包括作者、出版日期、内容摘要等。

一天,一位读者走到咨询台,询问:“请问有没有关于人工智能的最近出版的书籍?” 在 KBQA 系统之前,小杨可能需要在图书馆目录中进行繁琐的搜索,或者让读者自己去查找。但现在,她只需简单地将问题输入到 KBQA 系统中。

系统立即理解了问题,并在知识库中进行了快速检索。检索内容是所有具有人工智能属性的书籍的信息。几秒钟后,它返回了几本最近出版的人工智能相关书籍的信息,包括书名、作者和出版日期。小杨将这些信息展示给读者,读者非常满意地离开了咨询台。

KBQA 系统的引入不仅提高了图书馆服务的质量和效率,还增强了读者与图书馆之间的交互体验。读者们可以更加轻松地找到他们感兴趣的信息,而管理员也能更高效地回答读者的问题。这种自然、直观和高效的人机交互方式,使得图书馆成为了一个更加便捷、智能的学习和交流场所。

从上述两个场景中,我们可以明显看到语义解析在人机交互中的巨大价值。无论是 NL2SQL 还是 KBQA,它们的核心都在于对用户输入的自然语言进行深入的语义理解,并将其转化为机器可执行的指令或查询。这种转化能力不仅打破了用户与复杂数据库或知识库之间的障碍,让非专业用户也能轻松进行高级的数据操作或信息查询,还大大提高了交互的效率和准确性。更重要的是,语义解析技术使得机器能够更智能地响应用户需求,为用户提供更加个性化、精准的服务,从而增强了用户的使用体验和满意度。因此,语义解析不仅是实现自然、高效人机交互的关键,也是推动信息化社会向更高层次发展的重要驱动力之一。

通过自然语言查询数据库的意义在于提高效率和便捷性。随着技术的发展,知识存储方式也在不断演进,其中结构化和参数化是两种主要的存储方式。随着大模型运动的愈演愈烈,参数化存储可以将知识融入模型中,使得在输入时能够进行编码表示,这种方式有望逐渐取代传统的知识图谱。然而,即使机器学习模型将来达到与人类相当的水平,数据库和知识库仍然是必不可少的。因为知识图谱可能会演变成一种适合机器使用的机器词典,而不是现在我们所熟知的样子。所以参数化存储方式并不能完全替代结构化存储方式,也就是未来还是需要以数据库为代表的结构化知识存储方式。人要访问这些结构化知识,最为便捷的方式是通过自然语言进行查询。

通过自然语言查询数据库,用户可以以更加直观和高效的方式与数据库进行交互。相比于传统的查询语言,自然语言更加符合人类的思维习惯,使得非专业人士也能够轻松地从数据库中获取信息。这种交互方式的改进可以极大地提高工作效率,减少学习成本,并推动数据库的广泛应用。

通过自然语言查询数据库的意义在于适应知识存储方式的变革,提高工作效率和便捷性,推动数据库技术的发展和应用。同时,语义解析技术的发展和应用也为实现这一目标提供了有力的支持。

02 语义解析和大模型的关系

大规模预训练语言模型和语义解析技术就像是人工智能领域的两位超级英雄,它们各自有着独特的超能力,但当它们联手时,就能创造出更强大的力量。

大规模预训练语言模型,比如我们熟知的 ChatGPT,就像是一个语言天才。它经过大量的训练,能够理解和生成各种复杂的文本。举个例子,如果你让它写一篇关于 “环保知识” 的文章,它能够轻松地为你生成一篇结构清晰、内容丰富的文稿。或者,当你感到孤单时,它可以陪你聊天,为你提供情感上的支持。它的优势在于能够处理各种自然语言任务,就像一个全能选手一样。

然而,即使是全能选手也有它的局限性。当面对大量的结构化数据时,比如数据库里的信息,大规模预训练语言模型就显得有些力不从心了。例如,假设你是一家电商公司的客服机器人,用户想查询 “过去一年内,销量最高的商品是什么?”。对于大模型而言,要回答此问题需要将整个销售数据库作为输入,这显然是不现实的。此时,形式化语言作为与结构化数据交互的媒介变得尤为重要。通过语义解析技术,我们可以将用户的自然语言查询转化为 SQL 查询语句:“SELECT Product FROM SalesData ORDER BY QuantitySold DESC LIMIT 1”,从而直接对接数据库,获取所需信息。

此外,大模型的输出内容具有不可预测性。由于是生成式的模型,它们可能会在某些情况下产生不合理或不准确的内容。比如,当用户询问 “太阳是从哪个方向升起的?” 时,大模型可能会因为训练数据中的某些偏差或模型本身的随机性,产生 “太阳从西方升起” 的错误回答。而基于语义解析的方法由于依赖准确的结构化数据库(例如知识图谱中保存着太阳的一个属性是从东方升起),因此更倾向于给出确定的、基于知识的答案。

还有另一个例子是关于知识更新的。假设你是一位科研人员,昨天有一个重大的科学发现被公布,而今天你就想了解这个发现的具体内容。对于大模型来说,除非这个发现已经被加入到其训练数据中并重新训练了模型,否则它无法提供这一最新信息。但对于基于语义解析和数据库的方法,只需简单地更新数据库即可。这就像是你直接查阅最新的科研论文一样方便。

这时候,就需要另一位超级英雄——语义解析技术闪亮登场了。语义解析技术就像是一个精准的翻译官,它能够将自然语言转化为计算机能够理解的语言。比如,在智能家居系统中,你可以通过语音命令控制家里的灯光、音乐等设备。当你说 “打开客厅的灯” 时,语义解析技术会将你的语音转化为计算机能够理解的指令,从而实现灯光的控制。它的优势在于能够精确理解用户的意图,并提供可靠的答案。

这两位超级英雄的结合,就像是一场完美的舞蹈。大规模预训练语言模型提供了强大的语言生成和理解能力,而语义解析技术则为特定任务提供了精确的支持。它们的互补关系使得人工智能能够更好地理解和回应人类的需求,为我们的生活带来更多的便利和乐趣。

所以,不要小看传统的语义解析技术哦!在这个大模型的时代,它依然发挥着不可替代的作用。只有当我们充分利用两者的优势,才能实现更高效、更智能的自然语言处理体验!

延伸阅读

image-20240110100537747

语义解析:自然语言生成 SQL 与知识图谱问答实战

易显维, 宁星星 著

领域专家联袂推荐

语义解析大赛获奖者撰写

满足工业级应用安全、精准需求

弥合大模型的不足

本书购买链接

推荐语:

语义解析技术能解决大模型无法保证输出的形式语言可靠性和输出答案真实性的问题。本书由语义解析大赛获奖者撰写,通过本书的学习,读者可以了解 NLP 的相关技术,掌握自然语言生成 SQL 和知识图谱问答的实现方法。

剖析语义解析技术原理与实践,涵盖机器翻译、模板填充、强化学习、GNN、中间表达五大技术方向,并随书提供案例代码。

image-20240110100556841

本书购买链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1371056.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Helix QAC 2023.4 新版支持C++20语言,带来更多性能提升!

Helix QAC 2023.4 新增功能 Helix QAC 2023.4全面支持MISRA C:2023规则,涵盖100%的指南。此版本还加强了对C20语言的支持,改进了数据流分析性能,并在整个产品中增加了多项用户体验改进。 增强的C20支持 此版本新增了对以下语言特性的支持&a…

永久关闭Windows更新的5种方法

很多家用电脑,如果系统自动更新的话,会变得越来越卡顿,且硬件型号兼容也并不完美。那么我们该如何彻底关闭Win11的自动更新呢?以下准备了5种方法,您可以根据自身实际情况选择合适的方法! 一:使…

imgaug库指南(13):从入门到精通的【图像增强】之旅

引言 在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的…

【SPDK】【NoF】使用SPDK实现NVMe over Fabrics Target

本文使用两台PC,一台做NVMe over Fabrics Target(服务端),一台做NVMe over Fabrics initiator(客户端)。首先使用SoftRoCE来实现底层的rdma传输,然后使用SPDK来实现NVMe over Fabrics Target。 …

首家通过中国信通院数据库迁移工具专项测试,亚信安慧AntDB受到认可!

亚信安慧数据库数据同步平台经过中国信通院第17批“可信数据库”数据库迁移工具专项测试,成功成为首家符合《数据库迁移工具能力要求》的产品。该平台广泛适用于多种数据迁移场景,具备高性能实时数据处理、断点续作、一键迁移、可视化运维等核心优势。此…

Linux第22步_安装CH340驱动和串口终端软件MobaXterm

开发板输出信息通常是采用串口,而计算机通常是USB接口,为了让他们之间能够交换数据,我们通常采用USB转串口的转换器来实现。目前市场上的串口转换器大多是采用CH340芯片来实现的,因此我们需要在计算中安装一个CH340驱动程序&#…

echarts——折线图实现不同区间不同颜色+下钻/回钻功能——技能提升

echarts——折线图实现不同区间不同颜色下钻/回钻功能——技能提升 需求场景解决步骤1:安装echarts插件解决步骤2:html代码解决步骤3:封装option配置和initChart渲染方法解决步骤4:回钻功能 需求场景 最近在写后台管理系统时&…

conda环境下Torch not compiled with CUDA enabled解决方法

1 问题描述 在运行wav2lip模型训练时&#xff0c;报如下错误&#xff1a; Traceback (most recent call last):File "D:\ml\Wav2Lip\preprocess.py", line 32, in <module>fa [face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_inputF…

线性代数——(期末突击)矩阵(下)-习题篇(初等变换求逆矩阵、矩阵乘法、求矩阵方程、求线性方程组、解齐次线性方程组)

目录 初等变换求逆矩阵 矩阵乘法 求矩阵方程 求线性方程组 解齐次线性方程组 带有未知数的方程组 初等变换求逆矩阵 如果,则A可逆&#xff0c;且 例题&#xff1a; &#xff0c;求A的逆矩阵。 矩阵乘法 求AB&#xff0c;BA. 矩阵之间的乘法是行乘以列&#xff0c;以这…

基于ssm的教材管理系统论文

基于SSM的教材管理系统的设计与实现 摘 要 当下&#xff0c;正处于信息化的时代&#xff0c;许多行业顺应时代的变化&#xff0c;结合使用计算机技术向数字化、信息化建设迈进。以前学校对于教材信息的管理和控制&#xff0c;采用人工登记的方式保存相关数据&#xff0c;这种以…

沈阳数字孪生赋能工业智能制造,助力制造业企业数字化转型

沈阳数字孪生赋能工业智能制造&#xff0c;助力制造业企业数字化转型。在数字经济时代&#xff0c;数字孪生作为实现各行各业智能化、数字化的重要手段之一&#xff0c;受到了各方的广泛重视。随着各项关键使能技术的不断发展&#xff0c;数字孪生的应用价值有望得到进一步释放…

MFC 多文档视图架构

目录 多文档视图架构 模仿多文档视图架构 执行流程 多文档视图架构 一个多文档视图架构运行后会是下面的样子&#xff1a; 内部的子框架窗口就相当于一个单文档视图架构&#xff0c;多文档视图架构就相当于在外面套一层框架窗口。 特点&#xff1a;可以管理多个文档(可以有…

【hcie-cloud】【21】容器详解【容器网络说明、容器存储说明、容器镜像说明、dockerfile详述、缩略词】【下】

文章目录 容器介绍&#xff0c;容器工作机制、容器常用命令说明容器网络容器网络简介容器常用网络类型 - Bridge容器常用网络类型 - Host容器常用网络类型 - None其他容器网络类型【Macvlan、Overlay、IPvlan】容器网络相关配置 容器存储容器中应用数据的存储容器持久化存储配置…

猫粮的选择:买主食冻干猫粮要注意什么

由于猫咪是肉食动物&#xff0c;对蛋白质的需求很高&#xff0c;如果摄入的蛋白质不足&#xff0c;就会影响猫咪的成长。而冻干猫粮本身因为制作工艺的原因&#xff0c;能保留原有的营养成分和营养元素&#xff0c;所以冻干猫粮蛋白含量比较高&#xff0c;营养又高&#xff0c;…

控制障碍函数(Control Barrier Function,CBF) 三、代码

三、代码实现 3.1、模型 这是一个QP问题&#xff0c;所以我们直接建模 这其实还是之前的那张图&#xff0c;我们把这个大的框架带入到之前的那个小车追击的问题中去&#xff0c;得到以下的一些具体的约束条件 CLF约束 L g V ( x ) u − δ ≤ − L f V ( x ) − λ V ( x ) …

速学python·输入输出

和用户交互 程序与用户交互工程中 用户把信息传送给程序的过程是 输入 程序把结果展示给用户的过程是 输出 输入输出的最简单的方法是利用控制台 例如 和 都是控制台,进行输入和输出的作用 但是: 我们常见的交互界面,例如QQ,浏览器,Wegame等,都不需要输入命令,大大简化了操…

热度不减!一周61篇,二区以上近一半!| 孟德尔随机化周报(12.27-01.02)

欢迎报名2024年孟德尔随机化方法高级班课程&#xff01; 郑老师团队开设的孟德尔随机化高级班2024年1月20-21日开课&#xff0c;欢迎报名 孟德尔随机化,Mendilian Randomization&#xff0c;简写为MR&#xff0c;是一种在流行病学领域应用广泛的一种实验设计方法&#xff0c;利…

selenium爬取多个网站及通过GUI界面点击爬取

selenium爬取代码 webcrawl.py import re import time import json from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.chrome.options import Options from selenium.common.exceptions import TimeoutException, Stale…

Java:手工触发FullGC及堆占用过高常用分析方法

目录 一、手工触发FullGC方式 1、通过代码 2、通过工具 二、堆占用过高常用分析方法 1、查看堆占用情况 2、手工触发FullGC 3、查看对象占用堆的情况 4、分析可疑对象 使用如下命令查看java进程中内存的使用情况 jstat -gcutil <pid> 5000 发现运行中的java进程堆…

07、Kafka ------ 消息生产者(演示 发送消息) 和 消息消费者(演示 监听消息)

目录 Kafka --- 消息生产者★ 消息★ 消息的分发机制★ 分发到哪个分区★ 轮询策略&#xff08;round-robin&#xff09;★ 使用命令行工具发送消息演示添加消息 Kafka --- 消息消费者★ 消息消费者命令▲ 监听 【指定主题】 的所有消息:▲ 监听 【指定主题、指定分区】的所有消…