强化学习的数学原理学习笔记 - Actor-Critic

news2024/10/7 10:19:23

文章目录

  • 概览:RL方法分类
  • Actor-Critic
    • Basic actor-critic / QAC
    • 🟦A2C (Advantage actor-critic)
    • Off-policy AC
      • 🟡重要性采样(Importance Sampling)
      • Off-policy PG
      • Off-policy AC
    • 🟦DPG (Deterministic AC)


本系列文章介绍强化学习基础知识与经典算法原理,大部分内容来自西湖大学赵世钰老师的强化学习的数学原理课程(参考资料1),并参考了部分参考资料2、3的内容进行补充。

系列博文索引:

  • 强化学习的数学原理学习笔记 - RL基础知识
  • 强化学习的数学原理学习笔记 - 基于模型(Model-based)
  • 强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)
  • 强化学习的数学原理学习笔记 - 时序差分学习(Temporal Difference)
  • 强化学习的数学原理学习笔记 - 值函数近似(Value Function Approximation)
  • 强化学习的数学原理学习笔记 - 策略梯度(Policy Gradient)
  • 强化学习的数学原理学习笔记 - Actor-Critic

参考资料:

  1. 【强化学习的数学原理】课程:从零开始到透彻理解(完结)(主要)
  2. Sutton & Barto Book: Reinforcement Learning: An Introduction
  3. 机器学习笔记

*注:【】内文字为个人想法,不一定准确

概览:RL方法分类

图源:https://zhuanlan.zhihu.com/p/36494307
*图源:https://zhuanlan.zhihu.com/p/36494307

Actor-Critic

Actor-Critic属于策略梯度(PG)方法,实际上是将值函数近似和策略梯度方法进行了结合。

  • Actor:策略更新,Actor用来执行动作与环境交互
  • Critic:策略评估 / 值估计,Critic用来评估Actor的好坏

Basic actor-critic / QAC

与策略梯度算法对应,Actor即为策略梯度算法中执行策略更新的部分(通过更新参数 θ \theta θ),而Critic是估计 q t ( s t , a t ) q_t(s_t,a_t) qt(st,at)的算法。QAC(Q actor-critic)是最简单的actor-critic算法,也是一种on-policy方法。

QAC vs. REINFOCE:估计 q t ( s t , a t ) q_t(s_t,a_t) qt(st,at)的方法不同

  • REINFORCE:蒙特卡洛(MC)
  • QAC:时序差分(TD)

QAC算法:【简单理解:QAC = Sarsa with function estimation + Policy Gradient

  • Critic(值更新 / 策略评估):采用Sarsa with function estimation的方法估计 q t ( s t , a t ) q_t(s_t,a_t) qt(st,at)
    • w t + 1 = w t + α w [ r t + 1 + γ q ( s t + 1 , a t + 1 , w t ) − q ( s t , a t , w t ) ] ∇ w q ( s t , a t , w t ) w_{t+1} = w_t + \alpha_w [r_{t+1} + \gamma {q}(s_{t+1}, a_{t+1}, w_t) - {\color{blue} {q}(s_t, a_t, w_t)}] {\color{blue} \nabla_w {q}(s_t, a_t, w_t)} wt+1=wt+αw[rt+1+γq(st+1,at+1,wt)q(st,at,wt)]wq(st,at,wt)
  • Actor(策略更新 / 策略提升):采用策略梯度(PG)的方法(同REINFROCE)更新策略
    • θ t + 1 = θ t + α θ ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) q t ( s t , a t , w t + 1 ) \theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \ln\pi (a_t|s_t, \theta_t) {\color{blue} q_t(s_t, a_t, w_{t+1}) } θt+1=θt+αθθlnπ(atst,θt)qt(st,at,wt+1)

🟦A2C (Advantage actor-critic)

A2C的基本思想:在QAC中引入baseline来减少估计的方差(variance)。

理论基础:引入baseline b ( S ) b(S) b(S)后,策略梯度(期望)不会发生改变,但其方差会减小(推导略),即 ∇ θ J ( θ ) = E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) ] = E S ∼ η , A ∼ π [ ∇ θ ln ⁡ π ( A ∣ S , θ ) ( q π ( S , A ) − b ( S ) ) ] \nabla_\theta J (\theta) = \mathbb{E}_{S\sim\eta,A\sim\pi} [\nabla_\theta \ln\pi (A|S, \theta) q_\pi(S, A) ] = \mathbb{E}_{S\sim\eta,A\sim\pi} [\nabla_\theta \ln\pi (A|S, \theta) (q_\pi(S, A) {\color{blue} - b(S))} ] θJ(θ)=ESη,Aπ[θlnπ(AS,θ)qπ(S,A)]=ESη,Aπ[θlnπ(AS,θ)(qπ(S,A)b(S))] 其中, b ( S ) b(S) b(S)为关于 S S S的标量函数。
使得方差最小的最优baseline形式为: b ∗ ( s ) = E A ∼ π [ ∥ ∇ θ ln ⁡ π ( A ∣ s , θ t ) ∥ 2 q ( S , A ) ] E A ∼ π [ ∥ ∇ θ ln ⁡ π ( A ∣ s , θ t ) ∥ 2 ] b^*(s) = \frac{ \mathbb{E}_{A\sim\pi} [ {\color{blue} \| \nabla_\theta \ln\pi (A|s, \theta_t) \|^2} {\color{red} q(S,A)} ] }{ \mathbb{E}_{A\sim\pi} [ {\color{blue} \| \nabla_\theta \ln\pi (A|s, \theta_t) \|^2} ] } b(s)=EAπ[θlnπ(As,θt)2]EAπ[θlnπ(As,θt)2q(S,A)]
但直接应用此式过于复杂,因此在实际中选择次优baseline,去掉权重项 ∥ ∇ θ ln ⁡ π ( A ∣ s , θ t ) ∥ 2 \| \nabla_\theta \ln\pi (A|s, \theta_t) \|^2 θlnπ(As,θt)2,有: b ( s ) = E A ∼ π [ q ( S , A ) ] = v π ( s ) b(s) = \mathbb{E}_{A\sim\pi} [q(S,A)] = v_\pi(s) b(s)=EAπ[q(S,A)]=vπ(s)
即将 s s s的状态值作为baseline。

在actor(策略更新)中引入状态值作为baseline,即:
θ t + 1 = θ t + α E [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) [ q π ( S , A ) − v π ( S ) ] ] = θ t + α E [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) δ π ( S , A ) ] \begin{aligned} \theta_{t+1} &= \theta_t + \alpha \mathbb{E} \Big[ \nabla_\theta \ln\pi (A|S, \theta_t) [{\color{blue} q_\pi(S, A) - v_\pi (S)}] \Big] \\ &= \theta_t + \alpha \mathbb{E} \Big[ \nabla_\theta \ln\pi (A|S, \theta_t) {\color{blue} \delta_\pi(S, A)} \Big] \end{aligned} θt+1=θt+αE[θlnπ(AS,θt)[qπ(S,A)vπ(S)]]=θt+αE[θlnπ(AS,θt)δπ(S,A)]
其中, δ π ( S , A ) = q π ( S , A ) − v π ( S ) \delta_\pi(S, A) = q_\pi(S, A) - v_\pi (S) δπ(S,A)=qπ(S,A)vπ(S)是优势函数(advantage function),表示当前状态下的特定动作相对于当前策略的优势。对应的随机采样公式为:
θ t + 1 = θ t + α ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) [ q t ( s t , a t ) − v t ( s t ) ] = θ t + α ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) δ t ( s t , a t ) \begin{aligned} \theta_{t+1} &= \theta_t + \alpha \nabla_\theta \ln\pi (a_t|s_t, \theta_t) [ {\color{blue} q_t(s_t, a_t) - v_t(s_t)} ] \\ &= \theta_t + \alpha \nabla_\theta \ln\pi (a_t|s_t, \theta_t) {\color{blue} \delta_t(s_t, a_t)} \end{aligned} θt+1=θt+αθlnπ(atst,θt)[qt(st,at)vt(st)]=θt+αθlnπ(atst,θt)δt(st,at)
进一步地,优势函数可以由TD error近似(推导略),好处是只需要一个神经网络近似 v t v_t vt即可,不需要再近似 q t q_t qt。这就是A2C(也称为TD actor-critic)算法,其优势函数的具体形式为:
δ t = r t + 1 + γ v t ( s t + 1 ) − v t ( s t ) \delta_t = r_{t+1} + \gamma v_{t} (s_{t+1}) - v_t (s_t) δt=rt+1+γvt(st+1)vt(st)
*注:

  • 优势函数在文献中通常记作 A A A
  • 这里的直觉是,动作值的相对值比其绝对值更重要

A2C的完整算法(on-policy):

  • TD error(优势函数): δ t = r t + 1 + γ v t ( s t + 1 ) − v t ( s t ) {\color{darkred} \delta_t} = r_{t+1} + \gamma v_{t} (s_{t+1}) - v_t (s_t) δt=rt+1+γvt(st+1)vt(st)
  • Critic(值更新 / 策略评估): w t + 1 = w t + α w δ t ∇ w v ( s t , w t ) w_{t+1} = w_t + \alpha_w {\color{darkred} \delta_t} {\nabla_w {v}(s_t, w_t)} wt+1=wt+αwδtwv(st,wt)
    • *注意这里与QAC的区别:QAC用的是Sarsa,A2C用的是TD,因此这里用状态值而非动作值
  • Actor(策略更新 / 策略提升): θ t + 1 = θ t + α θ δ t ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) \theta_{t+1} = \theta_t + \alpha_\theta {\color{darkred} \delta_t} \nabla_\theta \ln\pi (a_t|s_t, \theta_t) θt+1=θt+αθδtθlnπ(atst,θt)

Off-policy AC

AC算法本身是on-policy的,但是可以通过重要性采样(Importance Sampling) 将其转为off-policy算法。
*实际上,重要性采样可以应用于任何需要求期望的算法(如MC、TD等)。

🟡重要性采样(Importance Sampling)

重要性采样:基于概率分布 p 1 p_1 p1上对随机变量 X X X的采样,估计概率分布 p 0 p_0 p0 X X X的期望 E [ X ] \mathbb{E}[X] E[X]
*应用场景:难以直接在 p 0 p_0 p0上计算 X X X的期望,但可以很容易在 p 1 p_1 p1上对进行 X X X采样。例如: p 0 p_0 p0是连续分布,或 p 0 p_0 p0的形式未知(如其为神经网络)。

E X ∼ p 0 [ X ] = ∑ x p 0 ( x ) x = ∑ x p 1 ( x ) p 0 ( x ) p 1 ( x ) x ⏟ f ( x ) = E X ∼ p 1 [ f ( X ) ] {\color{red} \mathbb{E}_{X\sim p_0} [X] } = \sum_x p_0(x) x = \sum_x {\color{blue} p_1(x)} \underbrace{\frac{p_0(x)}{\color{blue} p_1(x)} x}_{f(x)} = {\color{red} \mathbb{E}_{X\sim p_1} [f (X)] } EXp0[X]=xp0(x)x=xp1(x)f(x) p1(x)p0(x)x=EXp1[f(X)]
其中, E X ∼ p 1 [ f ( X ) ] \mathbb{E}_{X\sim p_1} [f (X)] EXp1[f(X)]可以由对 f ( X ) f(X) f(X)的采样均值直接估计(大数定律),即:
E X ∼ p 0 [ X ] ≈ f ˉ = 1 n ∑ i = 1 n f ( x i ) = 1 n ∑ i = 1 n p 0 ( x i ) p 1 ( x i ) x i {\color{red} \mathbb{E}_{X\sim p_0} [X] } \approx \bar{f} = \frac{1}{n} \sum_{i=1}^{n} f(x_i) {\color{red} = \frac{1}{n} \sum_{i=1}^{n} {\color{blue} \frac{p_0(x_i)}{p_1(x_i)} } x_i } EXp0[X]fˉ=n1i=1nf(xi)=n1i=1np1(xi)p0(xi)xi
其中, p 0 ( x i ) p 1 ( x i ) \frac{p_0(x_i)}{p_1(x_i)} p1(xi)p0(xi)是重要性权重(importance weight),其大于1表明 x i x_i xi p 0 p_0 p0下被采样的概率更高,小于1表明在 p 1 p_1 p1下被采样的概率更高。

Off-policy PG

由行为策略 β \beta β生成经验采样,目标是最大化下式:
J ( θ ) = ∑ s ∈ S d β ( s ) v π ( s ) = E S ∼ d β [ v π ( S ) ] J(\theta) = \sum_{s \in \mathcal{S}} d_\beta (s) v_\pi (s) = \mathbb{E}_{S \sim d_\beta} [v_\pi (S)] J(θ)=sSdβ(s)vπ(s)=ESdβ[vπ(S)]
其中, d β d_\beta dβ为策略 β \beta β下的平稳分布。(*注意此式与策略梯度中 J ( θ ) J(\theta) J(θ)为平均状态值 v ˉ π \bar{v}_\pi vˉπ时公式的区别)
对应的梯度为:
∇ θ J ( θ ) = E S ∼ ρ , A ∼ β [ π ( A ∣ S , θ ) β ( A ∣ S ) ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) ] \nabla_\theta J(\theta) = \mathbb{E}_{S \sim \rho, A \sim \beta} \Big[ \frac{\pi(A|S, \theta)}{\beta(A|S)} \nabla_\theta \ln \pi (A|S, \theta) q_\pi (S, A) \Big] θJ(θ)=ESρ,Aβ[β(AS)π(AS,θ)θlnπ(AS,θ)qπ(S,A)]
式中 ρ \rho ρ是一个状态分布, π ( A ∣ S , θ ) β ( A ∣ S ) \frac{\pi(A|S, \theta)}{\beta(A|S)} β(AS)π(AS,θ)是重要性权重。注意 A ∼ β A \sim \beta Aβ而非 A ∼ π A \sim \pi Aπ

Off-policy AC

基于前文分析,Off-policy AC的算法为:
θ t + 1 = θ t + α θ π ( a t ∣ s t , θ t ) β ( a t ∣ s t ) ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) [ r t + 1 + γ v t ( s t + 1 ) − v t ( s t ) ] = θ t + α θ π ( a t ∣ s t , θ t ) β ( a t ∣ s t ) ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) δ t ( s t , a t ) \begin{aligned} \theta_{t+1} &= \theta_t + \alpha_\theta \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} \nabla_\theta \ln\pi (a_t|s_t, \theta_t) [ {r_{t+1} + \gamma v_{t} (s_{t+1}) - v_t (s_t)} ] \\ &= \theta_t + \alpha_\theta \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} \nabla_\theta \ln\pi (a_t|s_t, \theta_t) {\delta_t(s_t, a_t)} \end{aligned} θt+1=θt+αθβ(atst)π(atst,θt)θlnπ(atst,θt)[rt+1+γvt(st+1)vt(st)]=θt+αθβ(atst)π(atst,θt)θlnπ(atst,θt)δt(st,at)

算法步骤及伪代码类似于A2C,主要是多了重要性权重 π ( a t ∣ s t , θ t ) β ( a t ∣ s t ) \frac{\pi(a_t|s_t, \theta_t)}{\beta(a_t|s_t)} β(atst)π(atst,θt)

🟦DPG (Deterministic AC)

先前的PG及AC算法均为随机性(stochastic)策略,实际上也存在确定性(deterministic)策略的AC算法,即DPG(Deterministic Policy Gradient)。
确定性策略相对于随机性策略的优势:随机性策略只能处理有限个动作的情况(比如,神经网络的输出是有限的),而确定性策略可以处理连续的动作空间。

确定性策略记作: a = μ ( s , θ ) a = \mu (s, \theta) a=μ(s,θ),也可以简记为 μ ( s ) \mu (s) μ(s)
μ \mu μ是从状态空间 S \mathcal{S} S到动作空间 A \mathcal{A} A的映射,可以由神经网络表示。

DPG为off-policy方法(动作不依赖于具体策略),其梯度计算如下:
∇ θ J ( θ ) = ∑ s ∈ S ρ μ ( s ) ∇ θ μ ( s ) ( ∇ a q μ ( s , a ) ) ∣ a = μ ( s ) = E S ∼ ρ μ [ ∇ θ μ ( s ) ( ∇ a q μ ( s , a ) ) ∣ a = μ ( s ) ] \begin{aligned} \nabla_\theta J (\theta) &= \sum_{s \in \mathcal{S}} \rho_\mu (s) \nabla_\theta \mu(s) (\nabla_a q_\mu (s, a)) |_{a = \mu (s)} \\ & = \mathbb{E}_{S \sim \rho_\mu} [\nabla_\theta \mu(s) (\nabla_a q_\mu (s, a)) |_{a = \mu (s)}] \end{aligned} θJ(θ)=sSρμ(s)θμ(s)(aqμ(s,a))a=μ(s)=ESρμ[θμ(s)(aqμ(s,a))a=μ(s)]
其中, ρ μ \rho_\mu ρμ是一个状态分布。 ( ∇ a q μ ( s , a ) ) ∣ a = μ ( s ) (\nabla_a q_\mu (s, a)) |_{a = \mu (s)} (aqμ(s,a))a=μ(s)表示先对 q μ ( s , a ) q_\mu(s,a) qμ(s,a)求关于 a a a的梯度,再将其中 a a a的替换为 μ ( s ) \mu(s) μ(s)
对应的随机梯度上升算法为:
θ t + 1 = θ t + α θ ∇ θ μ ( s t ) ( ∇ a q μ ( s t , a ) ) ∣ a = μ ( s ) \theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu(s_t) (\nabla_a q_\mu (s_t, a)) |_{a=\mu(s)} θt+1=θt+αθθμ(st)(aqμ(st,a))a=μ(s)

DPG算法步骤(伪代码):
初始化:行为策略 β ( a ∣ s ) \beta (a|s) β(as);确定性目标策略 μ ( s , θ 0 ) \mu(s, \theta_0) μ(s,θ0),其中 θ 0 \theta_0 θ0为初始参数向量;值函数 v ( s , w 0 ) v(s, w_0) v(s,w0),其中 w 0 w_0 w0为初始参数向量。(* β \beta β也可以被替换为 μ \mu μ+噪音)

目标:最大化 J ( θ ) J(\theta) J(θ)
步骤:在每个episode的第 t t t个时间步中,遵循行为策略 β \beta β产生动作 a t a_t at并获得 r t + 1 r_{t+1} rt+1 s t + 1 s_{t+1} st+1

  • TD error(优势函数): δ t = r t + 1 + γ q ( s t + 1 , μ ( s t + 1 , θ t ) , w t ) − q ( s t , a t , w t ) {\color{darkred} \delta_t} = r_{t+1} + \gamma q(s_{t+1}, \mu(s_{t+1}, \theta_t), w_t) - q(s_t, a_t, w_t) δt=rt+1+γq(st+1,μ(st+1,θt),wt)q(st,at,wt)
  • Critic(值更新 / 策略评估): w t + 1 = w t + α w δ t ∇ w q ( s t , a t , w t ) w_{t+1} = w_t + \alpha_w {\color{darkred} \delta_t} \nabla_w q(s_t, a_t, w_t) wt+1=wt+αwδtwq(st,at,wt),即TD+值函数估计
  • Actor(策略更新 / 策略提升): θ t + 1 = θ t + α θ ∇ θ μ ( s t , θ t ) ( ∇ a q ( s t , a , w t + 1 ) ) ∣ a = μ ( s t ) \theta_{t+1} = \theta_t + \alpha_\theta \nabla_\theta \mu(s_t, \theta_t) (\nabla_a q (s_t, a, w_{t+1})) |_{a=\mu(s_t)} θt+1=θt+αθθμ(st,θt)(aq(st,a,wt+1))a=μ(st)

注意到DPG中包含了 q ( s , a , w ) q(s,a,w) q(s,a,w),其可以由两种方式确定:

  • 线性函数: q ( s , a , w ) = ϕ T ( s , a ) w q(s,a,w) = \phi^T (s,a) w q(s,a,w)=ϕT(s,a)w,其中 ϕ ( s , a ) \phi(s,a) ϕ(s,a)是特征向量。这是DPG原论文中采用的方法,缺陷在于特征向量的选择比较困难,且线性函数的拟合能力有限
  • 神经网络:即后续的DDPG(Deep deterministic policy gradient)方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1368346.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用fs.renameSync(oldPath,newPath)方法,报错Error: ENOENT: no such file or directory

报错翻译:由于文件或目录不存在导致的。 解决方法:查看给定的路径,确保路径和文件名正确,并且文件或目录确实存在。

C语言--结构体详解

C语言--结构体详解 1.结构体产生原因2.结构体声明2.1 结构体的声明2.2 结构体的初始化2.3结构体自引用 3.结构体内存对齐3.1 对齐规则3.2 为什么存在内存对齐3.3 修改默认对⻬数 4. 结构体传参 1.结构体产生原因 C语言将数据类型分为了两种,一种是内置类型&#xf…

Spring学习 Spring事务控制

7.1.事务介绍 7.1.1.什么是事务? 当你需要一次执行多条SQL语句时,可以使用事务。通俗一点说,如果这几条SQL语句全部执行成功,则才对数据库进行一次更新,如果有一条SQL语句执行失败,则这几条SQL语句全部不…

2.SPSS数据文件的建立和管理

文章目录 数据文件的特点建立SPSS数据文件步骤 数据文件的结构变量的规则 数据的录入和保存录入数据保存文件 数据的编辑数据定位 数据文件的特点 SPSS数据库文件包括文件结构和数据两部分 SPSS数据文件中的一列数据称为一个变量。每个变量都应有一个名称,即&…

面试算法100:三角形中最小路径之和

题目 在一个由数字组成的三角形中,第1行有1个数字,第2行有2个数字,以此类推,第n行有n个数字。例如,下图是一个包含4行数字的三角形。如果每步只能前往下一行中相邻的数字,请计算从三角形顶部到底部的路径经…

centos7新建普通用户并设置分组和密码

sudo -i获取root权限 添加分组group1 groupadd group1 添加用户并设置分组为group1密码为password1 useradd user1 -g group1 -p password1 su user1 切换到 user1

第7章-第6节-Java中的Map集合

1、HashMap: 1)、 引入 如果业务需要我们去用姓名的拼音手写字母匹配完整姓名,那么如果用单列数据,我们可能需要两个集合才能存储,而且两个集合之间没有关联不好操作,这种时候双列数据就会起很大作用 2&…

Mysql : command not found

1.Mysql : command not found 安装成功的mysql,并且服务已经启动,查看进行是可以看到的,但是使用命令登录操作,却抛出错误:command not found。 2.解决方案 2.1 查看/usr/bin目录下是否有mysql服务连接 ls /usr/bin…

服务网格 Service Mesh

什么是服务网格? 服务网格是一个软件层,用于处理应用程序中服务之间的所有通信。该层由容器化微服务组成。随着应用程序的扩展和微服务数量的增加,监控服务的性能变得越来越困难。为了管理服务之间的连接,服务网格提供了监控、记…

Linux 期末复习

Linux 期末复习 计算机历史 硬件基础 1,计算机硬件的五大部件:控制器、运算器、存储器、输入输出设备 2,cpu分为精简指令集(RISC)和复杂指令集(CISC) 3,硬件只认识0和1,最小单位是bit,最小存储单位是字…

应用统计学期末复习简答题

应用统计学期末复习简答题 1.解释众数、中位数和调和平均数。2、什么是普查?其有何特点和作用?3、什么是抽样调查?其有何特点和作用?4、什么是偏度系数,并解释左偏分布、对称分布和右偏分布。5、解释置信区…

竞赛保研 基于深度学习的人脸表情识别

文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸表情识别 该项目较…

结构型设计模式——适配器模式

适配器模式 这个更加好理解,就是做适配功能的类,例如,现在手机没有了圆形耳机接口,只有Type-C接口,因此你如果还想要使用圆形耳机的话需要买个圆形接口转Type-C的转换器(适配器),这…

一分钟带你了解深度学习算法

深度学习是一种受到生物学启发的机器学习方法,其目标是通过构建多层神经网络来模拟人脑的工作原理。它在过去几十年来取得了巨大的进展,并在图像识别、语音识别、自然语言处理等领域取得了突破性的成果。 深度学习的核心思想是模仿人脑的神经网络。人脑中…

HarmonyOS应用开发学习笔记 Want概述Ability跳转

一、Want的定义与用途 Want是对象间信息传递的载体,可以用于应用组件间的信息传递。其使用场景之一是作为startAbility()的参数,包含了指定的启动目标以及启动时需携带的相关数据,如bundleName和abilityName字段分别指明目标Ability所在应用…

vue element ui table表格--实现列的显示与隐藏

前言 实现效果 提示&#xff1a;代码段太简单就不解释了&#xff0c;自己看代码自己更改&#xff0c;下面代码直接无脑复制更改就行 一、实现代码&#xff1f; <template><div id"app"><el-table :data"tableData" border style"w…

Spring 见解 7 基于注解的AOP控制事务

8.基于注解的AOP控制事务 8.1.拷贝上一章代码 8.2.applicationContext.xml <!-- 开启spring对注解事务的支持 --> <tx:annotation-driven transaction-manager"transactionManager"/> 8.3.service Service Transactional(readOnlytrue,propagation Pr…

学生用台灯对眼睛好吗?五款考研党台灯推荐

对于一名深耕家电多年的测评师&#xff0c;对于各品牌的台灯产品测评做了不少&#xff0c;本期我将给大家带来一期超全的热门护眼台灯深度测评。 据世界卫生组织最新研究报告称&#xff0c;我国近视患者人数多达6亿左右&#xff0c;几乎占据了中国总人口数量的一半&#xff0c;…

进程管理及计划任务

一、定义 程序&#xff1a;硬盘上躺着。执行特定任务的一串代码 进程&#xff1a;加载到内存中运行。进程是程序的副本&#xff0c;进程是有生命周期 进程的控制&#xff1a;每开启一个进程会消耗相应的硬件资源&#xff0c;内存&#xff0c;CPU&#xff0c;磁盘io 内存不足&am…

MongoDB高级集群架构设计

两地三中心集群架构设计 容灾级别 RPO & RTO RPO&#xff08;Recovery Point Objective&#xff09;&#xff1a;即数据恢复点目标&#xff0c;主要指的是业务系统所能容忍的数据丢失量。RTO&#xff08;Recovery Time Objective&#xff09;&#xff1a;即恢复时间目标&…