C语言--结构体详解

news2025/1/8 5:32:34

C语言--结构体详解

  • 1.结构体产生原因
  • 2.结构体声明
    • 2.1 结构体的声明
    • 2.2 结构体的初始化
    • 2.3结构体自引用
  • 3.结构体内存对齐
    • 3.1 对齐规则
    • 3.2 为什么存在内存对齐
    • 3.3 修改默认对⻬数
  • 4. 结构体传参

1.结构体产生原因

C语言将数据类型分为了两种,一种是内置类型,如:char、short、int、long、float、double等,这些内置类型能够很好的描述单个物体的某一具体特性,但是假设我想描述学⽣,描述⼀本书,这时单⼀的内置类型是不⾏的。描述⼀个学⽣需要名字、年龄、学号、⾝⾼、体重等;描述⼀本书需要作者、出版社、定价等。C语⾔为了解决这个问题,增加了结构体这种⾃定义的数据类型,让程序员可以⾃⼰创造适合的类型。

定义:结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量,如:标量、数组、指针,甚⾄是其他结构体

2.结构体声明

2.1 结构体的声明

结构体一般定义如下:

struct tag//struct是关键字,tag是结构类型名称,自拟,struct tag是结构体变量类型
{
 member-list;//{}中间是用于描述的变量集合
}variable-list;//variable-list是struct tag的变量声明
//variable-list == struct tag variable-list

例如描述一个学生:

struct Student
{
 char name[20];//名字
 int age;//年龄
 char sex[5];//性别
 char id[20];//学号
}std; //分号不能省,std == struct Student std

2.2 结构体的初始化

#include <stdio.h>
struct Stu
{
 char name[20];//名字
 int age;//年龄
 char sex[5];//性别
 char id[20];//学号
};
int main()
{
 //按照结构体成员的顺序初始化,即名字,年龄,性别,学号
 struct Stu s = { "张三", 20, "男", "20230818001" };
 //这种方式初始化不可调整顺序,且必须包含所有元素信息,否在会发生信息错误
 printf("name: %s\n", s.name);
 printf("age : %d\n", s.age);
 printf("sex : %s\n", s.sex);
 printf("id : %s\n", s.id);

 //按照指定的顺序初始化,可随意自行
 struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = "⼥}
 //这种方式初始化可任意调整顺序,不必按照结构体的声明顺序进行
 printf("name: %s\n", s2.name);
 printf("age : %d\n", s2.age);
 printf("sex : %s\n", s2.sex);
 printf("id : %s\n", s2.id);
 return 0;
}

特殊结构体声明:在声明结构的时候,可以不完全的声明。

//匿名结构体类型,即不对结构体命名
struct
{
 int a;
 char b;
 float c;
}x;

struct
{
 int a;
 char b;
 float c;
}a[20], *p;

如果没有对匿名结构体类型重命名的话,基本上只能使⽤⼀次。

2.3结构体自引用

结构体中可以引用自身,正确引用方式如下:

struct Node
{
 int data;
 struct Node* next;
};

struct Node* next是定义的一个变量为next的结构体变量。
此处不可改为struct Node next,因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的⼤⼩就会⽆穷的⼤,是不合理的。
简单来说就是结构体中只能使用结构体指针。

typedef struct Node
{
 int data;
 struct Node* next;
}Node;

typedef 是将 struct Node 重命名为 Node ,即 struct Node == Node ,Node 是struct Node 的重命名为,但是在结构体里面不能直接使用 *Node,因为Node是对前⾯的匿名结构体类型的重命名产⽣的,但是在匿名结构体内部提前使⽤Node类型来创建成员变量,这是不⾏的,因为在使用*Node之前,Node是不存在的,只能在Node出现之后才能使用。

3.结构体内存对齐

3.1 对齐规则

1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处

2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。

  • VS 中默认的值为 8
  • Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩

3. 结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

//练习1
struct S1
{
 char c1;
 int i;
 char c2;
};
printf("%d\n", sizeof(struct S1));

在这里插入图片描述
规则 1 :如图假设是一块内存区域,结构体从 “0” 的位置开始往后存放,那么c1的偏移量就是0。

规则2:int 类型的对齐数为4,编译器默认的对⻬数是8,二者取小值就是4,i 的内存就是从偏移量为4的位置开始,中间的 “1,2,3” 会被浪费掉。

char类型的对齐数是1,编译器默认的对⻬数是8,二者取小值就是1,c2 内存就是从偏移量为8的位置开始.

规则3:结构体的大小一定为最⼤对⻬数的整数倍,即为4,中间的“9,10,11”会被浪费掉,所以最后的结果为12.

//练习2
struct S2
{
 char c1;
 char c2;
 int i;
};
printf("%d\n", sizeof(struct S2));

在这里插入图片描述
规则 1 :如图假设是一块内存区域,结构体从 “0” 的位置开始往后存放,那么c1的偏移量就是0。

规则2:char类型的对齐数是1,编译器默认的对⻬数是8,二者取小值就是1,c2 内存就是从偏移量为1的位置开始.

int 类型的对齐数为4,编译器默认的对⻬数是8,二者取小值就是4,i 的内存就是从偏移量为4的位置开始,中间的 “2,3” 会被浪费掉。

规则3:结构体的大小一定为最⼤对⻬数的整数倍,即为4,所以最后的结果为8.

//练习3
struct S3
{
 double d;
 char c;
 int i;
};
printf("%d\n", sizeof(struct S3));

在这里插入图片描述
规则 1 :如图假设是一块内存区域,结构体从 “0” 的位置开始往后存放,那么d的偏移量就是0。

规则2:char类型的对齐数是1,编译器默认的对⻬数是8,二者取小值就是1,c 内存就是从偏移量为8的位置开始.

int 类型的对齐数为4,编译器默认的对⻬数是8,二者取小值就是4,i 的内存就是从偏移量为12的位置开始,中间的 “9,10,11” 会被浪费掉。

规则3:结构体的大小一定为最⼤对⻬数的整数倍,即为8,所以最后的结果为16.

//练习4-结构体嵌套问题
struct S4
{
 char c1;
 struct S3 s3;
 double d;
};
printf("%d\n", sizeof(struct S4));

在这里插入图片描述
规则 1 :如图假设是一块内存区域,结构体从 “0” 的位置开始往后存放,那么c的偏移量就是0。

规则2、4:由上面可知结构体s3的大小为16,结构体s3⾃⼰成员中最⼤对⻬数是8,编译器默认的对⻬数是8,二者取小值就是8,s3 内存就是从偏移量为8的位置开始,中间部分会被浪费掉。

double 类型的对齐数为8,编译器默认的对⻬数是8,二者取小值就8,d 的内存就是从偏移量为24的位置开始.

规则3:结构体的大小一定为最⼤对⻬数的整数倍,即为8,所以最后的结果为32.

3.2 为什么存在内存对齐

1. 平台原因 (移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因:

数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。

总体来说:结构体的内存对⻬是拿空间来换取时间的做法。

让占⽤空间⼩的成员尽量集中在⼀起

3.3 修改默认对⻬数

#pragma pack() 这个预处理指令,可以改变编译器的默认对⻬数,括号中填要更改的对齐数。

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
 //输出的结果是什么?
 printf("%d\n", sizeof(struct S));
 return 0;
}

结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数。

4. 结构体传参

结构体传参一般有两种方式,即传值传参和传址传参

struct S
{
 int data[1000];
 int num;
};
struct S s = {{1,2,3,4}, 1000};

//结构体传值传参
void print1(struct S s)
{
 printf("%d\n", s.num);
}

//结构体地址传参
void print2(struct S* ps)
{
 printf("%d\n", ps->num);
}
int main()
{
 print1(s); //传结构体
 print2(&s); //传地址
 return 0;
}

结构体一般使用的是传址传参,因为函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。

结论:结构体传参的时候,要传结构体的地址。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1368342.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring学习 Spring事务控制

7.1.事务介绍 7.1.1.什么是事务&#xff1f; 当你需要一次执行多条SQL语句时&#xff0c;可以使用事务。通俗一点说&#xff0c;如果这几条SQL语句全部执行成功&#xff0c;则才对数据库进行一次更新&#xff0c;如果有一条SQL语句执行失败&#xff0c;则这几条SQL语句全部不…

2.SPSS数据文件的建立和管理

文章目录 数据文件的特点建立SPSS数据文件步骤 数据文件的结构变量的规则 数据的录入和保存录入数据保存文件 数据的编辑数据定位 数据文件的特点 SPSS数据库文件包括文件结构和数据两部分 SPSS数据文件中的一列数据称为一个变量。每个变量都应有一个名称&#xff0c;即&…

面试算法100:三角形中最小路径之和

题目 在一个由数字组成的三角形中&#xff0c;第1行有1个数字&#xff0c;第2行有2个数字&#xff0c;以此类推&#xff0c;第n行有n个数字。例如&#xff0c;下图是一个包含4行数字的三角形。如果每步只能前往下一行中相邻的数字&#xff0c;请计算从三角形顶部到底部的路径经…

centos7新建普通用户并设置分组和密码

sudo -i获取root权限 添加分组group1 groupadd group1 添加用户并设置分组为group1密码为password1 useradd user1 -g group1 -p password1 su user1 切换到 user1

第7章-第6节-Java中的Map集合

1、HashMap&#xff1a; 1&#xff09;、 引入 如果业务需要我们去用姓名的拼音手写字母匹配完整姓名&#xff0c;那么如果用单列数据&#xff0c;我们可能需要两个集合才能存储&#xff0c;而且两个集合之间没有关联不好操作&#xff0c;这种时候双列数据就会起很大作用 2&…

Mysql : command not found

1.Mysql : command not found 安装成功的mysql&#xff0c;并且服务已经启动&#xff0c;查看进行是可以看到的&#xff0c;但是使用命令登录操作&#xff0c;却抛出错误&#xff1a;command not found。 2.解决方案 2.1 查看/usr/bin目录下是否有mysql服务连接 ls /usr/bin…

服务网格 Service Mesh

什么是服务网格&#xff1f; 服务网格是一个软件层&#xff0c;用于处理应用程序中服务之间的所有通信。该层由容器化微服务组成。随着应用程序的扩展和微服务数量的增加&#xff0c;监控服务的性能变得越来越困难。为了管理服务之间的连接&#xff0c;服务网格提供了监控、记…

Linux 期末复习

Linux 期末复习 计算机历史 硬件基础 1&#xff0c;计算机硬件的五大部件&#xff1a;控制器、运算器、存储器、输入输出设备 2&#xff0c;cpu分为精简指令集(RISC)和复杂指令集(CISC) 3&#xff0c;硬件只认识0和1&#xff0c;最小单位是bit&#xff0c;最小存储单位是字…

应用统计学期末复习简答题

应用统计学期末复习简答题 1&#xff0e;解释众数、中位数和调和平均数。2、什么是普查&#xff1f;其有何特点和作用&#xff1f;3、什么是抽样调查&#xff1f;其有何特点和作用&#xff1f;4、什么是偏度系数&#xff0c;并解释左偏分布、对称分布和右偏分布。5、解释置信区…

竞赛保研 基于深度学习的人脸表情识别

文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的人脸表情识别 该项目较…

结构型设计模式——适配器模式

适配器模式 这个更加好理解&#xff0c;就是做适配功能的类&#xff0c;例如&#xff0c;现在手机没有了圆形耳机接口&#xff0c;只有Type-C接口&#xff0c;因此你如果还想要使用圆形耳机的话需要买个圆形接口转Type-C的转换器&#xff08;适配器&#xff09;&#xff0c;这…

一分钟带你了解深度学习算法

深度学习是一种受到生物学启发的机器学习方法&#xff0c;其目标是通过构建多层神经网络来模拟人脑的工作原理。它在过去几十年来取得了巨大的进展&#xff0c;并在图像识别、语音识别、自然语言处理等领域取得了突破性的成果。 深度学习的核心思想是模仿人脑的神经网络。人脑中…

HarmonyOS应用开发学习笔记 Want概述Ability跳转

一、Want的定义与用途 Want是对象间信息传递的载体&#xff0c;可以用于应用组件间的信息传递。其使用场景之一是作为startAbility()的参数&#xff0c;包含了指定的启动目标以及启动时需携带的相关数据&#xff0c;如bundleName和abilityName字段分别指明目标Ability所在应用…

vue element ui table表格--实现列的显示与隐藏

前言 实现效果 提示&#xff1a;代码段太简单就不解释了&#xff0c;自己看代码自己更改&#xff0c;下面代码直接无脑复制更改就行 一、实现代码&#xff1f; <template><div id"app"><el-table :data"tableData" border style"w…

Spring 见解 7 基于注解的AOP控制事务

8.基于注解的AOP控制事务 8.1.拷贝上一章代码 8.2.applicationContext.xml <!-- 开启spring对注解事务的支持 --> <tx:annotation-driven transaction-manager"transactionManager"/> 8.3.service Service Transactional(readOnlytrue,propagation Pr…

学生用台灯对眼睛好吗?五款考研党台灯推荐

对于一名深耕家电多年的测评师&#xff0c;对于各品牌的台灯产品测评做了不少&#xff0c;本期我将给大家带来一期超全的热门护眼台灯深度测评。 据世界卫生组织最新研究报告称&#xff0c;我国近视患者人数多达6亿左右&#xff0c;几乎占据了中国总人口数量的一半&#xff0c;…

进程管理及计划任务

一、定义 程序&#xff1a;硬盘上躺着。执行特定任务的一串代码 进程&#xff1a;加载到内存中运行。进程是程序的副本&#xff0c;进程是有生命周期 进程的控制&#xff1a;每开启一个进程会消耗相应的硬件资源&#xff0c;内存&#xff0c;CPU&#xff0c;磁盘io 内存不足&am…

MongoDB高级集群架构设计

两地三中心集群架构设计 容灾级别 RPO & RTO RPO&#xff08;Recovery Point Objective&#xff09;&#xff1a;即数据恢复点目标&#xff0c;主要指的是业务系统所能容忍的数据丢失量。RTO&#xff08;Recovery Time Objective&#xff09;&#xff1a;即恢复时间目标&…

余震强度预测能力升级,Nature 刊文认证基于神经网络的模型性能优于传统模型

作者&#xff1a;李宝珠 编辑&#xff1a;李玮栋、xixi&#xff0c;三羊 地震的发生涉及诸多变量&#xff0c;「预测」存在挑战&#xff0c;但余震发生次数及强度的预测已取得重大进展。 2023 年 12 月 18 日 23 时 59 分&#xff0c;甘肃省临夏州积石山县发生 6.2 级地震&…

DQL-条件查询

1.语法 SELECT 字段列表 FROM 表名 WHERE 条件列表; 2.条件