最优化理论分析复习--最优性条件(一)

news2025/1/12 8:41:38

文章目录

  • 上一篇
  • 无约束问题的极值条件
  • 约束极值问题的最优性条件
  • 基本概念
    • 只有不等式约束时
  • 下一篇

上一篇

最优化理论复习–对偶单纯形方法及灵敏度分析

无约束问题的极值条件

由于是拓展到向量空间 R n R^n Rn, 所以可由高数中的极值条件进行类比

  1. 一阶必要条件
    设函数 f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 处可微, 若 x ˉ \bar{x} xˉ 是局部极小点,则 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0
    类比于若 x ˉ \bar{x} xˉ 是极小值点则 f ′ ( x ˉ ) = 0 f'(\bar{x}) = 0 f(xˉ)=0

  2. 二阶必要条件
    f ( x ) f(x) f(x) x ˉ \bar{x} xˉ 处二阶可微,若 x ˉ \bar{x} xˉ 是局部极小点, 则 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0, 且 H e s s i a n Hessian Hessian 矩阵 ▽ 2 f ( x ˉ ) \bigtriangledown^2f(\bar{x}) 2f(xˉ) 是半正定的。
    类比于 若 x ˉ \bar{x} xˉ是极小值点则 f ′ ( x ˉ ) = 0 , 且 f ′ ′ ( x ˉ ) ≥ 0 f'(\bar{x}) = 0, 且 f''(\bar{x}) \geq 0 f(xˉ)=0,f(xˉ)0

  3. 二阶充分条件
    设函数 f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 处二次可微,若梯度 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0, 且 H e s s i a n Hessian Hessian 矩阵 ▽ 2 f ( x ˉ ) 正 定 \bigtriangledown^2f(\bar{x})正定 2f(xˉ), 则 x ˉ \bar{x} xˉ是严格局部极小点。
    类比于 f ′ ( x ˉ ) = 0 , f ′ ′ ( x ˉ ) > 0 f'(\bar{x}) = 0, f''(\bar{x}) > 0 f(xˉ)=0,f(xˉ)>0 x ˉ \bar{x} xˉ 是极小值点

  4. 充要条件
    f ( x ) f(x) f(x) 是定义在 R n R^n Rn 上的可微凸函数 x ˉ ∈ R n \bar{x} \in R^n xˉRn, 则 x ˉ \bar{x} xˉ 为整体极小点的充要条件是 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0
    注:如果 f ( x ) f(x) f(x) 是严格凸的,则全局极小点是唯一的。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

约束极值问题的最优性条件

基本概念

定义: 对 m i n f ( x ) min f(x) minf(x), 设 x ˉ ∈ R n \bar{x} \in R^n xˉRn 是任给一点, d ≠ 0 d \not = 0 d=0, 若存在 δ > 0 \delta > 0 δ>0, 使得对任意的 λ ∈ ( 0 , δ ) \lambda \in (0, \delta) λ(0,δ), 有 f ( x ˉ + λ d ) < f ( x ˉ ) f (\bar{x} + \lambda d) < f(\bar{x}) f(xˉ+λd)<f(xˉ), 则称 d d d f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 处的下降方向。

  1. 引理: 设函数 f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 可微, 若存在 d ≠ 0 d \not = 0 d=0, 使得 ▽ f ( x ˉ ) T d < 0 \bigtriangledown f(\bar{x})^T d < 0 f(xˉ)Td<0, 则存在 δ > 0 \delta > 0 δ>0, 是使得对 ∀ λ ∈ ( 0 , δ ) \forall \lambda \in (0, \delta) λ(0,δ), 有 f ( x ˉ + λ d ) < f ( x ˉ ) f(\bar{x} + \lambda d)<f(\bar{x}) f(xˉ+λd)<f(xˉ)
    与梯度方向成钝角的方向是下降方向
    表示为
    F 0 = { d ∣ ▽ f ( x ˉ ) T d < 0 } F_0 = \{ d | \bigtriangledown f(\bar{x})^T d < 0\} F0={df(xˉ)Td<0}

  2. 定义: 设集合 S ⊂ R n , x ˉ ∈ c l S . S \subset R^n, \bar{x} \in clS. SRn,xˉclS., d d d 为非零向量, 若存在数 δ > 0 \delta > 0 δ>0, 使得对任意 λ ∈ ( 0 , δ ) , \lambda \in (0, \delta), λ(0,δ), 都有 x ˉ + λ d ∈ S \bar{x} + \lambda d \in S xˉ+λdS 则称 d d d 为集合 S S S x ˉ \bar{x} xˉ 的可行方向。
    就是移动方向在可行域内
    表示为 D = { d ∣ d ≠ 0 , x ˉ ∈ c l S , ∃ δ > 0 , ∀ λ ∈ ( 0 , δ ) , 有 x ˉ + λ d ∈ S } D = \{ d | d \not = 0, \bar{x} \in clS, \exists \delta > 0, \forall \lambda \in (0, \delta), 有 \bar{x} + \lambda d \in S \} D={dd=0,xˉclS,δ>0,λ(0,δ),xˉ+λdS}
    x ˉ 处 的 可 行 方 向 锥 \bar{x} 处的可行方向锥 xˉ

  3. 定义: 若问题的可行点 x ˉ \bar{x} xˉ 是某个不等式约束 g i ( x ) ≥ 0 g_i(x) \geq 0 gi(x)0 变成等式, 则该不等式约束称为关于可行点 x ˉ \bar{x} xˉ 的起作用约束; 否则称为不起作用约束。
    表示为
    I = { i ∣ g i ( x ˉ = 0 , x ˉ ∈ S ) } I = \{ i| g_i(\bar{x} = 0, \bar{x} \in S) \} I={igi(xˉ=0,xˉS)}

  4. 定义:在起作用约束作对应切线,获得对应梯度,与这两个梯度同时呈锐角的方向为积极约束的可行方向。
    表示为 G 0 = { d ∣ ▽ g i ( x ˉ ) T d > 0 , i ∈ I ( x ) } G_0 = \{d | \bigtriangledown g_i(\bar{x})^T d > 0, i \in I(x) \} G0={dgi(xˉ)Td>0,iI(x)}
    即由约束条件求出的可行方向
    G 0 ⊂ D G_0 \subset D G0D
    问题标准形式:
             m i n f ( x ) \ \ \ \ \ \ \ \ min f(x)         minf(x)

s . t . { g i ( x ) ≥ 0 , 不 等 式 约 束 h j ( x ) = 0 , 等 式 约 束 x ∈ R n s.t.\left \{\begin{matrix} g_i (x) \geq 0,不等式约束 \\ \\h_j(x) = 0,等式约束 \\ \\ x \in R^n \end {matrix} \right. s.t.gi(x)0hj(x)=0xRn

几何最优性条件:设 S S S R n R^n Rn 的非空集合, x ˉ ∈ S , f ( x ) \bar{x} \in S, f(x) xˉS,f(x) x ˉ \bar{x} xˉ 处可微, 若 x ˉ \bar{x} xˉ 是局部最优解, 则 F 0 ∩ D = ∅ F_0 \cap D = \emptyset F0D=
即所有的可行方向都是上升方向

只有不等式约束时

由于 G 0 ⊂ D G_0 \subset D G0D 所以也有 F 0 ∩ G 0 = ∅ F_0 \cap G_0 = \emptyset F0G0=,可行域之内不能有空洞

  • (F-J条件) 设 x ˉ ∈ S , I = { i ∣ g i ( x ˉ ) = 0 } , f ( x ) , g i ( x ) ( i ∈ I ) \bar{x} \in S, I = \{ i | g_i(\bar{x}) = 0\}, f(x), g_i(x) (i \in I) xˉS,I={igi(xˉ)=0},f(x),gi(x)(iI) x ˉ \bar{x} xˉ 处可微, g i ( x ) ( i ∉ I ) g_i(x) (i \notin I) gi(x)(i/I) x ˉ \bar{x} xˉ 处连续, 若 x ˉ \bar{x} xˉ 是问题的最优解,则存在不全为零的数 w 0 , w i ( i ∈ I ) w_0, w_i (i \in I) w0,wi(iI) 使得
    w 0 ▽ f ( x ˉ ) − ∑ i ∈ I w i ▽ g i ( x ˉ ) = 0 w_0 \bigtriangledown f(\bar{x}) - \sum\limits_{i \in I} w_i \bigtriangledown g_i(\bar{x}) = 0 w0f(xˉ)iIwigi(xˉ)=0
    x ˉ \bar{x} xˉ F − J F-J FJ
    为必要条件,极小值点一定是 F-J点, 但 F-J点不一定为极小值点

在这里插入图片描述

在这里插入图片描述
w 0 = 0 w_0 = 0 w0=0 是另外另个约束条件的梯度必须能相互抵消,这种情况才有最优解,因此更多的是关注 w 0 ≠ 0 w_0 \not = 0 w0=0的情况

  • (KKT条件) 设 x ˉ ∈ S \bar{x} \in S xˉS , f , g i ( i ∈ I ) 在 x ˉ 处 可 微 , g i ( i ∉ I ) 在 x ˉ 连 续 f, g_i(i \in I)在\bar{x} 处可微, g_i(i \notin I) 在\bar{x}连续 f,gi(iI)xˉ,gi(i/I)xˉ(保证无空洞), { ▽ g i ( x ˉ ) ∣ i ∈ I } 线 性 无 关 \{ \bigtriangledown g_i(\bar{x}) | i \in I\} 线性无关 {gi(xˉ)iI}线, 若 x ˉ \bar{x} xˉ 是局部最优解, 则存在非负数 w i , i ∈ I , w_i, i \in I, wi,iI, 使得
    ▽ f ( x ˉ ) − ∑ i ∈ I w i ▽ g i ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) - \sum\limits_{i \in I} w_i \bigtriangledown g_i(\bar{x}) = 0 f(xˉ)iIwigi(xˉ)=0

在这里插入图片描述
凸规划的判别方法:

  1. 可行域是凸集, 目标函数是凸函数
  2. 可行域是 ≥ \geq 的凹函数, 目标函数是凸函数

求KKT点

  • KKT条件的另一种表述
    x ˉ ∈ S \bar{x} \in S xˉS , f , g i ( i ∈ I ) 在 x ˉ f, g_i(i \in I)在\bar{x} f,gi(iI)xˉ 处可微, { ▽ g i ( x ˉ ) ∣ i ∈ I } 线 性 无 关 \{ \bigtriangledown g_i(\bar{x}) | i \in I\}线性无关 {gi(xˉ)iI}线, 若 x ˉ \bar{x} xˉ 是局部最优解, 则存在非负数 w i , i = 1 , 2... m w_i, i =1,2...m wi,i=1,2...m 使得
    { ▽ f ( x ˉ ) − ∑ i = 1 m w i ▽ g i ( x ˉ ) = 0 ( 没 要 求 对 应 的 g i ( x ) 为 约 束 条 件 ) w i g i ( x ˉ ) = 0 , i = 1 , 2... m ( 互 补 松 弛 条 件 ) w i ≥ 0 i = 1 , 2... m \left \{\begin{matrix} \bigtriangledown f(\bar{x}) - \sum\limits_{i = 1}^{m} w_i \bigtriangledown g_i(\bar{x}) = 0(没要求对应的g_i(x)为约束条件) \\ \\w_ig_i(\bar{x}) = 0, i = 1, 2...m (互补松弛条件) \\ \\ w_i \geq 0 i = 1,2...m \end {matrix} \right. f(xˉ)i=1mwigi(xˉ)=0(gi(x))wigi(xˉ)=0,i=1,2...mwi0i=1,2...m

通过这个表述方式,加上原来的约束然后将所有的方程列出来求解
在这里插入图片描述
在这里插入图片描述
有人会算的话请留言,感谢

下一篇

最优化理论复习–最优性条件(二)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1367076.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringCloud系列篇:核心组件之配置中心组件

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于SpringCloud的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.前言 二.配置中心组件是什么 三…

【年度重磅】《2023华为开发者宝典》覆盖16+技术领域,30+华为云专家倾力打造,免费下载

《2023华为开发者宝典》重磅发布&#xff0c;点击下载&#xff0c;欢迎大家转发赠阅&#xff0c;相互交流学习。 时光荏苒&#xff0c;转眼间我们已经告别挑战与机遇并存的2023年&#xff0c;迎接充满无限可能的2024年。 截至到2023年&#xff0c;华为云生态已聚合了全球超过5…

大数据StarRocks(四) :常用命令

这次主要介绍生产工作中使用Starrocks时的常用命令 4.1 连接StarRocks 4.1.1 Linux命令行连接 [roothadoop1011 fe]# yum install mysql -y [roothadoop1011 fe]# mysql -h hadoop101 -uroot -P9030 -p4.1.2 Windows客户端 DBeaver 连接 4.2 常用命令 4.2.1 查看状态 1. 查…

用js随机添加字母

样式 <style>.itp {width: 200px;height: 60px;border: 5px solid red;text-align: center;line-height: 60px;font-size: 30px;margin: 10px;}button {width: 80px;height: 30px;color: rgb(229, 225, 232);border-radius: 4px;font-size: 20px;outline: none;border: …

猫头虎分享已解决Bug || 解决Vue.js not detected的问题 ️

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通Golang》…

WEB 3D技术 three.js 顶点旋转

我们来说说几何体顶点的旋转 官网搜索 BufferGeometry 这里 我们有 x y z 三个轴的旋转 例如 我们这样的代码 import ./style.css import * as THREE from "three"; import { OrbitControls } from "three/examples/jsm/controls/OrbitControls.js"; i…

阿里云新用户的定义与权益

随着云计算的普及&#xff0c;阿里云作为国内领先的云计算服务提供商&#xff0c;吸引了越来越多的用户。对于新用户来说&#xff0c;了解阿里云新用户的定义和相关权益非常重要&#xff0c;因为它关系到用户能否享受到更多的优惠和服务。 一、阿里云新用户的定义 阿里云新用户…

arm64架构编译electron长征路

1. gn工具生成 在arm64下需要构建对应架构的gn文件。 源代码下载,并且切换到对应的版本。 git clone https://gn.googlesource.com/gn cd gn git checkout 5a004f9427a0将gn源码放在src/tools/gn目录下,内容如下图 1.1 问题,找不到last_commit_position.h文件 问题描述如…

Flask:URL与视图映射

本文章只作为个人笔记. 文章目录 前言一、URL与视图映射二、介绍总结 前言 第二个flask项目. 一、URL与视图映射 开启debug模式. from flask import Flask, requestapp Flask(__name__)# url:http[80]/https[443]://ww.qq.com:443/path # url与视图:path与视图app.route(/)…

Qt QPushButton按钮控件

文章目录 1 属性和方法1.1 文本1.2 图标1.3 样式表1.4 信号 2 实例2.1 布局2.2 添加图标2.3 添加样式表2.4 代码实现 1 属性和方法 按钮除了可以设置显示文本之外&#xff0c;还可以设置图标 1.1 文本 可以获取和设置按钮上显示的文本 // 获取和设置按钮的文本 QString tex…

强化学习6——动态规划置策略迭代算法,以悬崖漫步环境为例

策略迭代算法 通过策略评估与策略提升不断循环交替&#xff0c;得到最优策略。 策略评估 固定策略 π \pi π 不变&#xff0c;估计状态价值函数V 一个策略的状态价值函数&#xff0c;在马尔可夫决策过程中提到过&#xff1a; V π ( s ) ∑ a ∈ A π ( a ∣ s ) ( r (…

java案例知识点

一.会话技术 概念 技术 二.跨域 三.过滤器 四.拦截器

test mutation-03-变异测试 mujava Mutation 入门

拓展阅读 开源 Auto generate mock data for java test.(便于 Java 测试自动生成对象信息) 开源 Junit performance rely on junit5 and jdk8.(java 性能测试框架。性能测试。压测。测试报告生成。) test 系统学习-04-test converate 测试覆盖率 jacoco 原理介绍 Java (muJ…

四 视图

1、实验目的 理解SQL成熟设计基本规范&#xff0c;能够熟练使用SQL语句来创建需要的视图&#xff0c;定义数据库外模式&#xff0c;并能使用所创建的视图实现数据管理。 2、实验内容及要求 使用SQL对数据库进行各类查询数据操纵操作&#xff0c;掌握单行数据插入、多行数据插…

设计模式的艺术P1基础—第1章 概述

刘伟&#xff0c;2020 概述&#xff1a;4部分&#xff0c;26章。 P1:基础&#xff08;1-2章&#xff09; P2:创建型设计模式&#xff08;创建艺术&#xff0c;3-8章&#xff09; P3:结构型设计模式&#xff08;组合艺术&#xff0c;9-15章&#xff09; P4:行为型设计模式&…

文件系统和日志

目录 一、inode号和black &#xff08;一&#xff09;inode号概述 &#xff08;二&#xff09;硬链接和软链接 &#xff08;三&#xff09;inode值 二、日志 &#xff08;一&#xff09;日志的分类 1.系统日志 2.用户日志 3.程序日志 &#xff08;二&#xff09;日志…

【SpringCloud Alibaba笔记】(4)Seata处理分布式事务

Seata 分布式事务问题 单机单库没这个问题&#xff0c;分布式之前从1: 1 -> 1:N ->N:N 分布式之后 单体应用被拆分成微服务应用&#xff0c;原来的三个模块被拆分成三个独立的应用分别使用三个独立的数据源&#xff0c;业务操作需要调用三个服务来完成。 此时每个服务…

计算机毕业设计 基于javaweb的学生交流培养管理平台/系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

算法通关村番外篇-LeetCode热题100系列一

大家好我是苏麟 , 今天开始出这个LeetCode热题100系列 . LeetCode热题100 , 是LeetCode的热门题目也是面试比较爱考的 . 大纲 两数之和 两数之和 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;…

Visual Studio 2022 AI Code 支持

1.先在 Log In | Codeium Free AI Code Completion & Chat 上注册一个用户 在Visual Stuido 中扩展中搜索 codeium 并安装 安装完成后登录即可。 注意国内可能存在网络问题无法使用这时建议使用代理进行登录。 地址如下&#xff1a; Sign Up | Codeium Free AI Code Co…