【OpenMP】 2.1 简单示例

news2025/1/13 15:54:20

1、C++中的OMP显示构造

OpenMP在C/C++中通常以编译指令的方式进行使用,一个指令和一个结构化块组成构造。

#pragma omp parallel [clause[[,]clause]... ]

#pragma omp parallel private(x)
{
     //并行代码
}

示例代码:

#include <iostream>
#include <omp.h>     // openmp头文件
#include <mutex> // 互斥锁

int main() {

    std::mutex outstream_mutex; //创建输出互斥锁
//openmp构造指令,如下结构块中创建多个子线程并行执行
// default(shared)用于在每个独立线程中共享outstream_mutex锁
#pragma omp parallel default(shared)
    {
        //获取当前线程ID
        int id = omp_get_thread_num();
        // 每个时刻只允许一个线程进行输出
        outstream_mutex.lock();
        std::cout << " thread id " << id << std::endl;
        outstream_mutex.unlock();
    }
    return 0;
}

CmakeList:

cmake_minimum_required(VERSION 3.0)
project(TestOpenMP)

set(CMAKE_BUILD_TYPE "Release")

FIND_PACKAGE(OpenMP REQUIRED)
if (OPENMP_FOUND)
    message("OPENMP FOUND")
    set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS} -Wall   -O3")
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS} -Wall   -O3")
    set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS}")
endif ()

add_executable(simple_example your_source_code.cc)

输出结果如下所示:

 thread id 10
 thread id 3
 thread id 9
 thread id 11
 thread id 6
 thread id 7
 thread id 1
 thread id 4
 thread id 8
 thread id 5
 thread id 2
 thread id 0

Process finished with exit code 0

如果去掉输出锁的情况如下:

#include <iostream>
#include <omp.h>     // openmp头文件

int main() {
//openmp构造指令,如下结构块中创建多个子线程并行执行
// default(shared)用于在每个独立线程中共享outstream_mutex锁
#pragma omp parallel
    {
        //获取当前线程ID
        int id = omp_get_thread_num();
        // 每个时刻只允许一个线程进行输出
        std::cout << " thread id " << id << std::endl;
    }
    return 0;
}

 输入如下, 可以看到输出为乱序的:

 thread id  thread id 26 thread id 

 thread id 4
 thread id 8
 thread id 9
10
 thread id 7
 thread id 5
 thread id 3
 thread id 1
 thread id 11
 thread id 0

Process finished with exit code 0

        上述的代码中,默认的创建了12个线程,因为演示的计算机为12个线程,因此omp会默认讲线程组的线程数设置为当前操作系统可见的核心数;但提供了多种方式用于设置构造执行的线程数。

        上述示例中可以看到,程序创建处多个线程来同时执行{}大括号内的代码块。

        #pragma omp parallel构造会创建(fork)出一组线程来执行构造内的代码,完成之后会将线程合并(join)在一起并将刚刚新创建的线程组销毁,保留其中的主线程,然后主线程继续执行。

如下图所示:

如右边所示需要注意子线程中也是可以嵌套并行区域,需要注意避免引起数据数据竞争与内存带宽上限问题。

fork-join模型,一个程序以单线程开始,分叉创建(fork)一组子线程,每个子线程独立执行构造中的代码,完成后子线程线程合并(join),原主进程继续执行

        在实际的线程创建与销毁的过程中,omp会使用线程池这种结构来移动线程已减少线程创建与销毁带来的开销;也就是说只是表面上你所创建的线程都被销毁了,但是在后台他并没有被销毁,其他的程序需要时,这些线程又可以快速的填上,缩短创建它的时间。底层由OMP运行时系统来决定。另外OMP的线程在底层中通过线程池的方式来实现的,这种结构可以减少移动线程的方式替换创建与销毁线程的开销。

2、设定默认线程数

        omp的程序开始时,在创建线程组时默认为系统可见的线程数,因此可以根据使用场景合理的设置该数值;这里有多种方法可以更改默认线程数,此处使用omp_set_num_threads来实现。

注意:一个线程组一旦创建,其规模是固定的,OpenMP Runtime不会减少线程组的规模

        另外一种设置线程数的方法为通过环境变量的方式,如果是在Linux系统中,可以通过如下命令设置:

export OMP_NUM_THREADS=线程数

#include <omp.h>
#include <iostream>
#include <vector>
#include <mutex> // 互斥锁

void pooh(int ID, std::vector<double> Array) {
    Array[ID] = ID;
}

int main() {
    int num_threads = 4;
    //所有线程都可以访问Array
    std::vector<double> Array(num_threads);
    //通过omp_set_num_threads设置可见的线程为4
    omp_set_num_threads(num_threads);
    std::mutex outstream_mutex; //创建输出互斥锁
#pragma omp parallel default(shared)
    {
        int ID = omp_get_thread_num();  // 获取当前线程的ID
        pooh(ID, Array);
        outstream_mutex.lock();
        std::cout << "A of ID(" << ID << ") = " << Array[ID] << std::endl;
        outstream_mutex.unlock();
    } // end of parallel region
}
A of ID(0) = 0
A of ID(3) = 0
A of ID(1) = 0
A of ID(2) = 0

Process finished with exit code 0

3、获取线程组中的线程数

#include <omp.h>
#include <iostream>

int main() {
    omp_set_num_threads(4);
    int size_of_team;
#pragma omp parallel shared(size_of_team)//此处将size_of_team设置为共享变量,使得子线程都可以访问
    {
        int ID = omp_get_thread_num();   // 获取当前线程的ID
        int NThrds = omp_get_num_threads(); // 获取当前并行区域中一共有多少个线程
        //只允许第0个线程可以进行如下的赋值操作,否则,
        // 需要使用mutex来进行赋值,不然会引发数据冲突,虽然此处的数据冲突不影响最终的结果,但需要注意
        // 某些其他平台的处理器会因为数据冲突导致未定义数值的出现
        if (ID == 0) {
            size_of_team = NThrds;
        }
    } // end of parallel region
    std::cout << "线程组中一共有" << size_of_team << "个线程" << std::endl;
}
线程组中一共有4个线程

4、简单示例

4.1 并行计算定积分

下面是一个定积分计算的例子,该程序通过将曲线下的面积近似为矩形面积的和来估计一个定积分的结果;选择积分和积分范围,使得这个积分的结果等于\pi。将通过SPMD(单程序多数据|Single Program/Multiple Data)的设计模式来实现:

代码中包含两种实现:一种为multi_stride:

另一种为:

#include <omp.h>
#include <iostream>
#include <vector>
#include <chrono>   // std::chrono::seconds
#include <thread>   // std::this_thread::sleep_fo

static long num_steps = 1e9;
double step;
#define NTHREADS 4 //定义线程数

void plain() {
    int i;
    double x, pi, sum = 0.0;
    double start_time, run_time;

    step = 1.0 / (double) num_steps;

    // openmp内部实现的时钟定时器
    start_time = omp_get_wtime();

    for (i = 0; i < num_steps; i++) {
        x = (i + 0.5) * step; //计算每个δ矩形x的数值,中值积分
        sum += 4.0 / (1.0 + x * x);
    }

    pi = step * sum;
    run_time = omp_get_wtime() - start_time;
    std::cout << "单线程: " << "pi = " << pi << ", " << num_steps << " steps "
              << run_time << " secs" << std::endl;
}

void multi_stride() {
    int i, j, actual_nthreads;
    double pi, start_time, run_time;
    double sum[NTHREADS] = {0.0};

    step = 1.0 / (double) num_steps;

    start_time = omp_get_wtime();
#pragma omp parallel shared(step)
    {
        int i;
        int id = omp_get_thread_num();
        int numthreads = omp_get_num_threads();
        double x;

        if (id == 0) {
            actual_nthreads = numthreads;
        }
        /*
         每个线程独立执行
         第0个线程执行0,0+numthreads,0+numthreads+numthreads的数据
         第1个线程执行1,1+numthreads,1+numthreads+numthreads的数据
         以此类推,并将结果分别累加在各自的sum中
         */
        for (i = id; i < num_steps; i += numthreads) {
            x = (i + 0.5) * step;
            sum[id] += 4.0 / (1.0 + x * x);
        }
    } // end of parallel region
    pi = 0.0;
    for (i = 0; i < actual_nthreads; i++)
        pi += sum[i];

    pi = step * pi;
    run_time = omp_get_wtime() - start_time;
    std::cout << "多线程 stride: " << "pi = " << pi << ", " << num_steps << " steps "
              << run_time << " secs" << std::endl;
}

void multi_block() {
    int i;
    double pi, start_time, run_time;
    std::vector<double> sum;
    sum.resize(num_steps, 0);

    step = 1.0 / (double) num_steps;

    start_time = omp_get_wtime();

#pragma omp parallel shared(step)
    {
        int i, istart, iend;
        int id = omp_get_thread_num();
        int numthreads = omp_get_num_threads();
        double x;

        istart = id * num_steps / numthreads;
        iend = (id + 1) * num_steps / numthreads;
        if (id == (numthreads - 1)) iend = num_steps;

        /*
         每个线程计算指定的一块区域,
         第0个线程计算0 - 1e9/NTHREADS,
         第1个线程计算1e9/NTHREADS - 1e9/NTHREADS * 2,
         第2个线程计算1e9/NTHREADS *2 - 1e9/NTHREADS * 3,
         依次类推
         */
        for (i = istart; i <= iend; i++) {
            x = (i + 0.5) * step;
            sum[i] = 4.0 / (1.0 + x * x);
        }
    } // end of parallel region
    pi = 0.0;
//通过规约对数组进行求和
#pragma omp parallel for reduction(+:pi)
    for (i = 0; i < sum.size(); i++)
        pi += sum[i];

    pi = step * pi;
    run_time = omp_get_wtime() - start_time;

    std::cout << "多线程 block: " << "pi = " << pi << ", " << num_steps << " steps "
              << run_time << " secs" << std::endl;
};


int main() {
    omp_set_num_threads(NTHREADS);
    plain();
    multi_stride();
    std::this_thread::sleep_for(std::chrono::seconds(1));
    multi_block();

}

结果如下,可以看到多线程的结果

单线程: pi = 3.14159, 1000000000 steps 2.43653 secs
多线程 stride: pi = 3.14159, 1000000000 steps 0.711552 secs
多线程 block: pi = 3.14159, 1000000000 steps 1.18776 secs

Process finished with exit code 0

4.2 内存伪共享问题

        上述的代码会场生一个内存同步问题,每个线程处理数据时,都会读取对应的一组数据到核心的L1缓存行中,如果多个核心同时读取了同一段内存中的数据作为缓存行,则会在核心改写局部数据后出现内存同步的问题,内存同步会导致高速缓存行需要在各核心之间来回移动,降低程序运行的效率。

        下图中,两个核心都读取了存放数组Sum的缓存行,数组的相邻元素被映射常常被映射到同一个缓存行上,如果硬件线程0修改了Sum[0]元素,这个修改会导致即将需要更新Sum[2]的第二个硬件线程中的缓存行需要等待同步操作;也就是说每个核心更新一次缓存行会导致数据在多个核心之间来回同步。

 下面的代码将通过使用二位数组填充脏数据的方式使得,每个线程的缓存行数据是独立的。

#include <omp.h>
#include <iostream>

#define NTHREADS 4
#define CBLK  8  // 每个double类型占8个字节,N100CPU的L1缓存行大小为64字节,因此8个double类型可以占满

static long num_steps = 1e9;
double step;

int main() {
    std::cout<< sizeof(double )<<std::endl;

    int i, j, actual_nthreads;
    double pi, start_time, run_time;
    //将sum设置为一个二维数组,并使用脏数据将其填满
    double sum[NTHREADS][CBLK] = {0.0};

    step = 1.0 / (double) num_steps;

    omp_set_num_threads(NTHREADS);

    start_time = omp_get_wtime();
#pragma omp parallel default(shared)
    {
        int i;
        int id = omp_get_thread_num();
        int numthreads = omp_get_num_threads();
        double x;

        if (id == 0) actual_nthreads = numthreads;

        for (i = id; i < num_steps; i += numthreads) {
            x = (i + 0.5) * step;
            //每个线程只会操作各自行的第0个数据
            sum[id][0] += 4.0 / (1.0 + x * x);
        }
    } // end of parallel region
    pi = 0.0;
    for (i = 0; i < actual_nthreads; i++)
        pi += sum[i][0];

    pi = step * pi;
    run_time = omp_get_wtime() - start_time;
    std::cout << "多线程 block: " << "pi = " << pi << ", " << num_steps << " steps "
              << run_time << " secs" << std::endl;
}	  
8
多线程 block: pi = 3.14159, 1000000000 steps 0.782837 secs

Process finished with exit code 0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1366769.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

阿里与上交大提出 LLM 长文本计算新解法:可处理文本长达 1900k 字节

在实际应用大模型的过程中&#xff0c;尤其是处理长文本的上下文信息时&#xff0c;如何高效灵活地调度计算资源成为一个学术界与工业界共同关注的问题。 大语言模型所能容纳的上下文长度直接影响了诸如 ChatGPT 等高级应用与用户交互体验的优劣程度&#xff0c;这给云环境下的…

【问题】SpringBoot项目中log4j与logback的Jar包冲突问题

这篇文章主要给大家介绍了解决SpringBoot项目中log4j与logback的Jar包冲突问题,文中有详细的解决方法和冲突的原因。 SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/C:/Users/lx/.m2/repository/org/slf4j/slf4j-log4j12/1.7.25/sl…

Java学习笔记(六)——基本数据类型及其对应的包装类

文章目录 包装类基本数据类型及其对应的包装类获取Integer对象的方式(了解)获取Integer对象两种方式的区别(掌握) 包装类的计算&#xff1a;自动装箱和自动拆箱Integer成员方法综合练习练习1练习2练习3练习4练习5 包装类 包装类&#xff1a;基本数据类型对应的引用数据类型。 …

10本医护升职称可用的医药普刊推荐,参数大全!

医、药、护、技及医学工程等相关的人员&#xff0c;进行卫生高级职称评审时&#xff0c;需要在专业期刊上公开发表本专业学术论文&#xff0c;论文的方向、内容质量以及发表的刊物都至关重要。今天常笑医学给大家整理了10本不错的医药普刊&#xff0c;供大家参考&#xff01; 1…

x-cmd pkg | busybox - 嵌入式 Linux 的瑞士军刀

目录 简介首次用户功能特点竞品和相关作品 进一步阅读 简介 busybox 是一个开源的轻量级工具集合&#xff0c;集成了一批最常用 Unix 工具命令&#xff0c;只需要几 MB 大小就能覆盖绝大多数用户在 Linux 的使用&#xff0c;能在多款 POSIX 环境的操作系统&#xff08;如 Linu…

普中STM32-PZ6806L开发板(有点悲伤的故事续-人灯还未了)

简介 继上篇 普中STM32-PZ6806L开发板(有点悲伤的故事) 说到 关于 普中STM32-PZ6806L开发板的LED流水灯也被烧坏掉了&#xff0c;再也无法玩流水灯, 内心充满了只会流水灯的不甘, 流水灯就是单片机的Hello World&#xff0c;怎么能没有呢&#xff1f; 事情发展 好巧不巧想起最近…

十九:爬虫最终篇-平安银行商城实战

平安银行商场实战 需求 获取该商城商品信息 目标网址 https://m.yqb.com/bank/product-item-50301196.html?mcId1583912328849970&loginModepab&historyy&sceneModem&traceid30187_4dXJVel1iop详细步骤 1、寻找数据接口 2、对比payload寻找可疑参数 3、多…

Spring——基于注解的AOP控制事务

基于注解的AOP控制事务 1.拷贝上一次代码 2.applicationContext.xml <!-- 开启spring对注解事务的支持 --> <tx:annotation-driven transaction-manager"transactionManager"/> 3.service Service Transactional(readOnlytrue,propagation Propagatio…

RT_Thread 调试笔记:时间相关,时钟管理函数,延时,定时器、 毫秒转换为时分秒 等

说明&#xff1a;记录日常使用 RT_Thread 开发时做的笔记。 持续更新中&#xff0c;欢迎收藏。 1. 延时函数 1. us延时函数 rt_hw_us_delay(rt_uint32_t us);//输如数据是us rt_hw_us_delay(200);//输入数据是us 2. ms延时函数 rt_thread_mdelay(1000);//输入数据是ms 2…

Android Matrix (二)具体图形变换参数的获取

Android Matrix &#xff08;二&#xff09;具体图形变换参数的获取 Matrix 类在 Android 中用于表示 3x3 的变换矩阵。这个矩阵可以应用于画布&#xff08;Canvas&#xff09;&#xff0c;视图&#xff08;View&#xff09;或者位图&#xff08;Bitmap&#xff09;&#xff0…

C#设计模式之单例模式

介绍 单例模式&#xff08;Singleton&#xff09;保证一个类仅有一个实例&#xff0c;并提供一个访问它的全局访问点。 单例模式的结构图如下所示&#xff1a; 使用单例模式的原因 对一些类来说&#xff0c;只有一个实例是很重要的。如何才能保证一个类只有一个实例并且这个…

【JAVA】Iterator 怎么使用?有什么特点

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; JAVA ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 Iterator 接口的主要方法&#xff1a; 例子 特点&#xff1a; 结语 我的其他博客 前言 在编程的世界里&#xff0c;迭代…

【QML COOK】- 000-创建Project

1. 文件->New Project... 2. Application(Qt)->Qt Quick Application(compat) 3. 填好【名称】和【创建路径】 4. 选择CMake 5. 选择QT6.2 6. 直接【下一步】 7. 直接下一步 8. 直接下一步 9. 出现工程文件 10. 点击运行 11. 出现窗口

npm报错error:03000086:digital envelope routines::initialization error

可能是因为node版本过高&#xff0c;与现在的项目不符合 这是降低node版本的命令&#xff0c;然后重新运行 npm install npm8.1.2 -g

张留念瞰游天下总经理与汤加政府签署合作备忘 将于2024年隆重启动

汤加是南太平洋上一个美丽的岛国&#xff0c;是南太平洋唯一维持君主立宪制的国家&#xff0c;全国由173个海岛组成&#xff0c;海洋、海岛旅游资源丰富&#xff0c;是个原生态的旅游胜地。 中汤两国建交25年以来&#xff0c;两国政府高级官员和代表团互访频繁&#xff0c;在政…

【源码预备】Calcite基础知识与概念:关系代数概念、查询优化、sql关键字执行顺序以及calcite基础概念

文章目录 一. 关系代数的基本知识二. 查询优化三. SQL语句的解析顺序1. FROM2. WHERE3. GROUP BY4. HAVING5. SELECT 四. Apache Calcite中的基本概念1. Adapter2. Calcite中的关系表达式2.1. 关系表达式例子2.2. 源码底层结构 3. Calcite的优化规则4. Calcite的Trait--算子物理…

自动挡的闪300?QJ要做第一个吃螃蟹的人了?

其实在发布会当天&#xff0c;有一台车在现场热度是比赛921还高的&#xff0c;因为四缸大跑车大家可能都见多了&#xff0c;而QJ带来一台自动挡的闪300&#xff0c;这个自动挡其实是需要加个引号的&#xff0c;因为升档的时候是需要你按一下手把上的按键的&#xff0c;有点类似…

设计模式的艺术P1基础—2.4-2.11 面向对象设计原则

设计模式的艺术P1基础—2.4-2.11 面向对象设计原则 2.4 面向对象设计原则概述 向对象设计的目标之一在于支持可维护性复用&#xff0c;一方面需要实现设计方案或者源代码的重用&#xff0c;另一方面要确保系统能够易于扩展和修改&#xff0c;具有较好的灵活性。 面向对象设计…

基于Java SSM框架实现实现机房预约系统项目【项目源码+论文说明】

基于java的SSM框架实现机房预约系统演示 摘要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识&#…

这款Web剪藏工具绝了,支持10+平台内容剪辑同步!

前言 Web Clipper 是一个开源项目&#xff0c;旨在帮助用户轻松地保存和组织网页内容。它可以作为浏览器插件安装到常见的浏览器中&#xff0c;如Chrome、Firefox 等&#xff0c;用户可以使用它来保存网页、截取文章、添加标签和注释等操作&#xff0c;从而方便地管理和分享自…