大创项目推荐 深度学习图像风格迁移

news2024/11/25 16:26:37

文章目录

  • 0 前言
  • 1 VGG网络
  • 2 风格迁移
  • 3 内容损失
  • 4 风格损失
  • 5 主代码实现
  • 6 迁移模型实现
  • 7 效果展示
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像风格迁移 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

在这里插入图片描述
原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。

1 VGG网络

在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

在这里插入图片描述
如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

在这里插入图片描述

2 风格迁移

对一副图像进行风格迁移,需要清楚的有两点。

  • 生成的图像需要具有原图片的内容特征
  • 生成的图像需要具有风格图片的纹理特征

根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。

而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。

再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

在这里插入图片描述
如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。

现在就可以看网上很常见的一张图片了:

在这里插入图片描述
相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。

细化的结果可以分为两个方面:

  • (1)内容损失
  • (2)风格损失

3 内容损失

由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

在这里插入图片描述

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

在这里插入图片描述

代码实现:

def content_loss(content_img, rand_img):
    content_layers = [('relu3_3', 1.0)]
    content_loss = 0.0
    # 逐个取出衡量内容损失的vgg层名称及对应权重
    for layer_name, weight in content_layers:

        # 计算特征矩阵
        p = get_vgg(content_img, layer_name)
        x = get_vgg(rand_img, layer_name)
        # 长x宽xchannel
        M = p.shape[1] * p.shape[2] * p.shape[3]

        # 根据公式计算损失,并进行累加
        content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight

    # 将损失对层数取平均
    content_loss /= len(content_layers)
    return content_loss

4 风格损失

风格损失由多个特征一同计算,首先需要计算Gram Matrix

在这里插入图片描述
Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在这里插入图片描述
在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

在这里插入图片描述
第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。

代码实现以上函数:

# 求gamm矩阵
def gram(x, size, deep):
    x = tf.reshape(x, (size, deep))
    g = tf.matmul(tf.transpose(x), x)
    return g

def style_loss(style_img, rand_img):
    style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]
    style_loss = 0.0
    # 逐个取出衡量风格损失的vgg层名称及对应权重
    for layer_name, weight in style_layers:

        # 计算特征矩阵
        a = get_vgg(style_img, layer_name)
        x = get_vgg(rand_img, layer_name)

        # 长x宽
        M = a.shape[1] * a.shape[2]
        N = a.shape[3]

        # 计算gram矩阵
        A = gram(a, M, N)
        G = gram(x, M, N)

        # 根据公式计算损失,并进行累加
        style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
    # 将损失对层数取平均
    style_loss /= len(style_layers)
    return style_loss

5 主代码实现

代码实现主要分为4步:

  • 1、随机生成图片

  • 2、读取内容和风格图片

  • 3、计算总的loss

  • 4、训练修改生成图片的参数,使得loss最小

      * def main():
            # 生成图片
            rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)
            with tf.Session() as sess:
    
                content_img = cv2.imread('content.jpg')
                style_img = cv2.imread('style.jpg')
            
                # 计算loss值
                cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)
                optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
            
                sess.run(tf.global_variables_initializer())
                
                for step in range(TRAIN_STEPS):
                    # 训练
                    sess.run([optimizer,  rand_img])
            
                    if step % 50 == 0:
                        img = sess.run(rand_img)
                        img = np.clip(img, 0, 255).astype(np.uint8)
                        name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                        cv2.imwrite(name, img)
    
    
    

    6 迁移模型实现

由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:

在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

在这里插入图片描述
下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

在这里插入图片描述
进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。

def vgg19():
    layers=(
        'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
        'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
        'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
        'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
        'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
    )
    vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
    weights = vgg['layers'][0]

    network={}
    net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
    network['input'] = net
    for i,name in enumerate(layers):
        layer_type=name[:4]
        if layer_type=='conv':
            kernels = weights[i][0][0][0][0][0]
            bias = weights[i][0][0][0][0][1]
            conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
            net=tf.nn.relu(conv + bias)
        elif layer_type=='pool':
            net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
        network[name]=net
    return network

由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。

总的代码如下:



    import tensorflow as tf
    import numpy as np
    import scipy.io
    import cv2
    import scipy.misc
    
    HEIGHT = 300
    WIGHT = 450
    LEARNING_RATE = 1.0
    NOISE = 0.5
    ALPHA = 1
    BETA = 500
    
    TRAIN_STEPS = 200
    
    OUTPUT_IMAGE = "D://python//img"
    STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]
    CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]


    def vgg19():
        layers=(
            'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
            'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
            'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
            'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
            'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
        )
        vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
        weights = vgg['layers'][0]
    
        network={}
        net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
        network['input'] = net
        for i,name in enumerate(layers):
            layer_type=name[:4]
            if layer_type=='conv':
                kernels = weights[i][0][0][0][0][0]
                bias = weights[i][0][0][0][0][1]
                conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
                net=tf.nn.relu(conv + bias)
            elif layer_type=='pool':
                net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
            network[name]=net
        return network


    # 求gamm矩阵
    def gram(x, size, deep):
        x = tf.reshape(x, (size, deep))
        g = tf.matmul(tf.transpose(x), x)
        return g


    def style_loss(sess, style_neck, model):
        style_loss = 0.0
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = style_neck[layer_name]
            x = model[layer_name]
            # 长x宽
            M = a.shape[1] * a.shape[2]
            N = a.shape[3]
    
            # 计算gram矩阵
            A = gram(a, M, N)
            G = gram(x, M, N)
    
            # 根据公式计算损失,并进行累加
            style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
            # 将损失对层数取平均
        style_loss /= len(STYLE_LAUERS)
        return style_loss


    def content_loss(sess, content_neck, model):
        content_loss = 0.0
        # 逐个取出衡量内容损失的vgg层名称及对应权重
    
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = content_neck[layer_name]
            x = model[layer_name]
            # 长x宽xchannel
    
            M = p.shape[1] * p.shape[2]
            N = p.shape[3]
    
            lss = 1.0 / (M * N)
            content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight
            # 根据公式计算损失,并进行累加
    
        # 将损失对层数取平均
        content_loss /= len(CONTENT_LAYERS)
        return content_loss


    def random_img(height, weight, content_img):
        noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])
        random_img = noise_image * NOISE + content_img * (1 - NOISE)
        return random_img

   

    def get_neck(sess, model, content_img, style_img):
        sess.run(tf.assign(model['input'], content_img))
        content_neck = {}
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = sess.run(model[layer_name])
            content_neck[layer_name] = p
        sess.run(tf.assign(model['input'], style_img))
        style_content = {}
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = sess.run(model[layer_name])
            style_content[layer_name] = a
        return content_neck, style_content


    def main():
        model = vgg19()
        content_img = cv2.imread('D://a//content1.jpg')
        content_img = cv2.resize(content_img, (450, 300))
        content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
        style_img = cv2.imread('D://a//style1.jpg')
        style_img = cv2.resize(style_img, (450, 300))
        style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
    
        # 生成图片
        rand_img = random_img(HEIGHT, WIGHT, content_img)
    
        with tf.Session() as sess:
            # 计算loss值
            content_neck, style_neck = get_neck(sess, model, content_img, style_img)
            cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)
            optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
    
            sess.run(tf.global_variables_initializer())
            sess.run(tf.assign(model['input'], rand_img))
            for step in range(TRAIN_STEPS):
                print(step)
                # 训练
                sess.run(optimizer)
    
                if step % 10 == 0:
                    img = sess.run(model['input'])
                    img += [128, 128, 128]
                    img = np.clip(img, 0, 255).astype(np.uint8)
                    name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                    img = img[0]
                    cv2.imwrite(name, img)
    
            img = sess.run(model['input'])
            img += [128, 128, 128]
            img = np.clip(img, 0, 255).astype(np.uint8)
            cv2.imwrite("D://end.jpg", img[0])
    
    main()



7 效果展示

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1366437.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自学编程资源收集

Java,Python,C,JavaScript,SpringBoot,Vue,MySql等各种编程资料收集 mksz712-系统玩转OpenGLAI,实现各种酷炫视频特效mksz709-从0到1训练私有大模型 ,企业急迫需求,抢占市场先机~8mksz702-Chat…

布偶猫必囤主食冻干有哪些?三款K9、sc、希喂主食冻干深度测评!

喂养布偶猫的小诀窍:既要满足其食肉习性,又需关注其敏感肠胃。主食冻干是理想选择,它既符合猫咪天然的饮食结构,又采用新鲜生肉为原料。搭配其他营养元素,既美味又营养,还能增强抵抗力。我们将为您测评市场…

IPv6路由协议---IPv6动态路由(RIPng)

IPv6动态路由协议 动态路由协议有自己的路由算法,能够自动适应网络拓扑的变化,适用于具有一定数量三层设备的网络。缺点是配置对用户要求比较高,对系统的要求高于静态路由,并将占用一定的网络资源和系统资源。 路由表和FIB表 路由器转发数据包的关键是路由表和FIB表,每…

如何写一篇专利?格式与要求

如何写一篇专利?格式与要求 知识产权专利类型发明实用新型外观设计 专利的审查专利授权的标准新颖性创造性实用性 不授予专利的情形 专利的挖掘专利五书权力要求书说明书技术领域背景技术发明内容附图说明具体实施方式 说明书附图说明书摘要摘要附图 知识产权 市场…

流量控制在计算机网络中的应用

计算机网络是我们现代社会中必不可少的一部分,其在信息传输和分享方面起到了至关重要的作用。然而,面对大量的数据流量和用户请求,网络必须进行流量控制,以保证网络的稳定性和性能。本文将探讨流量控制在计算机网络中的应用。 流…

本地部署Canal笔记-实现MySQL与ElasticSearch7数据同步

背景 本地搭建canal实现mysql数据到es的简单的数据同步,仅供学习参考 建议首先熟悉一下canal同步方式:https://github.com/alibaba/canal/wiki 前提条件 本地搭建MySQL数据库本地搭建ElasticSearch本地搭建canal-server本地搭建canal-adapter 操作步骤…

设计模式④ :分开考虑

一、前言 有时候不想动脑子,就懒得看源码又不像浪费时间所以会看看书,但是又记不住,所以决定开始写"抄书"系列。本系列大部分内容都是来源于《 图解设计模式》(【日】结城浩 著)。该系列文章可随意转载。 …

小白入门基础 - Restful

一:REST与RESTful: REST:表现层状态转移,资源在网络中以某种形式进行状态转移。 RESTful是基于REST理念的一套开发风格,是具体的开发规则。 服务器端只返回数据,以json或者xml的格式。 RESTful开发规范&a…

小白新手轻松部署扫雷小游戏

小白新手轻松部署扫雷小游戏 云效云效操作导入资源镜像仓库应用配置 最后 说到扫雷小游戏,可以说大家都玩儿过,印象中刚接触计算机的时候,对于这个扫雷小游戏,很多人都很喜欢,觉得很有意思,大家一起挑战看谁…

win10报错“COMDLG32.OCX文件丢失,软件无法启动”,快速修复方法,亲测有效

COMDLG32.OCX文件是Windows操作系统中的一个ActiveX控件文件,是Common Dialogs控件的一部分,主要用于支持各种软件运行时的一些基本功能,如打开、保存文件对话框等。 COMDLG32.OCX文件的作用主要体现在以下几点: 1. 提供应用程序通…

Commander One for Mac:强大的双窗格文件管理器,让你的工作效率倍增!

Commander One for Mac是一款功能强大的文件管理工具,具有以下主要功能: 双窗格设计:主界面分为两个窗格,用户可以在左侧窗格中导航和浏览文件系统的目录结构,在右侧窗格中查看文件和文件夹的内容。文件操作&#xff…

【教学类-45-02】X-Y之间的三连减题(a-b-c=)

作品展示: 背景需求: 【教学类-45-01】X-Y之间的三连加题(abc)-CSDN博客文章浏览阅读5次。【教学类-45-01】X-Y之间的三连加题(abc)https://blog.csdn.net/reasonsummer/article/details/135436915 有了三连加怎么能没有三连减,修改参数&am…

Vmware安装Windows11系统及下载MySQL步骤(超详细)

一、创建虚拟机 ①选择自定义 ②直接点击下一步 ③选择Windows 11 x64 ④命名虚拟机以及选择路径 ⑤新版本的虚拟机需要加密(密码需要8个字符以上) ⑥选择UEFI ⑦处理器配置(根据自己的需求) ⑧设置虚拟机的内存 ⑨选择不使用网络…

LeetCode 2807. 在链表中插入最大公约数【链表,迭代,递归】1279

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…

天锐绿盾文档加密系统

绿盾文档加密系统是一种针对企业数据安全而设计的解决方案,旨在保护企业核心数据不被泄露。该系统由文件加密模块、内网安全模块等部分组成,主要功能包括对需要保护的文件进行强制加密保护,并对文件的使用进行全程监控。通过绿盾文档加密系统…

数据结构之B树和B+树

数据结构可视化演示链接,也就是视频中的网址 文章目录 一、B-Tree二、BTree(B-Tree变种) 一、B-Tree 叶节点具有相同的深度,叶节点的指针为空所有索引元素不重复节点中的数据索引从左到右递增排列 二、BTree(B-Tree变种) 非叶子节点不存储 data &#…

如何进行深入的竞品分析:掌握这些技巧让你更加了解市场

随着互联网行业的快速发展,产品经理需要对竞品进行深入分析,才能更好地把握市场需求和趋势,为公司带来更好的商业价值。那么,如何做好竞品分析呢?以下是我对于这个问题的思考和建议。 一、确定分析的目的和范围 在开…

积分的求法

1.第一类换元积分法(凑微分法):用dt代替dx,积分消失加常数 2.第二类换元积分法(用于开根号):用sint,cost,tant代替x,其中tant可以用于secx的平方-1tanx的平方 3.倒代换&#xff1a…

10个常用恶意软件检测分析平台(网工精选)

你们好,我的网工朋友。 我们往期的文章已经同步过很多的好用工具,毕竟,作为一个职场网工人,提升效率才是才能在单位时间内赚到更多的工资 往期的好用工具收到了不少好的反响,今天更新一波新的工具安利,专…

Python实现PowerPoint(PPT/PPTX)到PDF的批量转换

演示文稿是一种常见传达信息、展示观点和分享内容的形式,特别是PowerPoint演示文稿,广泛应用于各行各业,几乎是演讲等场合的必备工具。然而,演示文稿也有其限制,对设备的要求较高,且使用不同的软件或设备演…