Redis内存策略:「过期Key删除策略」+ 「内存淘汰策略」

news2024/9/22 17:21:47

Redis之所以性能强,最主要的原因就是基于内存存储,然而单节点的Redis其内存大小不宜过大,否则会影响持久化或主从同步的性能。

Redis内存满了,会发生什么?

  • 在Redis的运行内存达到了某个阈值,就会触发内存淘汰机制,这个阈值就是我们设置的最大运行内存。 

我们可以通过修改redis.conf配置文件来设置Redis的最大内存,配置项为maxmemory:

# 格式:
# maxmemory <bytes>
# 例如:
maxmemory 1gb

当内存使用达到上限,就无法存储更多数据了,因此,为了解决这个问题,Redis内部会有两套内存回收的策略:

  • 内存过期策略
  • 内存淘汰策略

内存过期策略 - 过期key处理 - 过期删除策略

如何设置过期时间?
  1. expire key n秒     
  2. pexpire key  n毫秒     
  3. set   key  value  ex  n秒   
  4. set  key  value nx  n毫秒

查看某个key剩余的存活时间:TTL  key 

  • 我们可以通过expire / EX命令给Redis的key设置TTL(过期时间 / 存活时间),单位:秒,当key的TTL到期以后,即当过期时间到了以后,再次访问该key时返回的是nil,说明这个Key已经不存在了,对应的内存也得到释放,从而起到内存回收的目的。
# 写入一条数据
set num 123
# 设置20秒过期时间
expire num 20
# 写入一条数据并设置20s过期时间
set num EX 20

Redis是如何知道一个key是否过期呢?

  • Redis本身是一个典型的key-value的键值型内存存储数据库,因此所有的key-value都保存在Dict结构中,在其redisDb结构体中,有两个Dict,也就是哈希表:一个用来记录KEY-VALUE键值对(当然存的不是真正的Key-Value,存储的其实是RedisObject对应的内存地址的指针),另一个用来记录key的TTL。

过期字典存储在 redisDb 结构中,如下: 

来看下redisDb的底层源码:

typedef struct redisDb {
    dict dict;                 / The keyspace for this DB , 也就是存放KEY和VALUE的哈希表*/
    dict *expires;              /* 同样是哈希表,但保存的是设置了TTL的KEY,及其到期时间*/
    dict *blocking_keys;        /* Keys with clients waiting for data (BLPOP)*/
    dict *ready_keys;           /* Blocked keys that received a PUSH */
    dict *watched_keys;         /* WATCHED keys for MULTI/EXEC CAS /
    int id;                     / Database ID, 0 ~ 15 /
    long long avg_ttl;          / Average TTL, just for stats /
    unsigned long expires_cursor; / Cursor of the active expire cycle. */
    list *defrag_later;         /* List of key names to attempt to defrag one by one, gradually. */
} redisDb;

每当我们对一个key设置了过期时间后,Redis会把该key带上过期时间存储到一个过期字典(expires dict)中,也就是说「过期字典」保存了数据库中所有 key 的过期时间。 

当我们查询一个 key 时,Redis 首先检查该 key 是否存在于过期字典中:

  • 如果不在,则正常读取键值;
  • 如果存在,则会获取该 key 的过期时间,然后与当前系统时间进行比对,如果比系统时间大,那就没有过期,否则判定该 key 已过期    =>   查询到对应的TTL,加以判断即可。

是不是TTL到期就立即删除了呢? 

TTL(Time To Live)的含义是存活时间。 

  • Redis并不会在Key过期时立刻删除KEY,因为要实现这样的效果就必须给每一个过期Key设置一个定时器,并监控这些Key的过期状态,然后去做判断,在key过期的那一刻给它立刻删掉   =>  定时删除它的优点就是保证过期key会被尽快删除,也就是内存可以尽快得到释放,因此,定时删除对内存是最友好的;
  • 如果说我们的key比较少那还好,但是如果我们的key非常的多,达到数十万甚至数百万,那么这些key如果我们都给它设置这样一个定时器,无论是对CPU还是对内存都会带来极大的负担,这样一来,就会严重影响到Redis服务本身的一个性能,所以说这个是没有办法接受的,因此,我们在实际应用当中,Redis采用的并不是立即删除,而是惰性删除  + 周期删除  =>   Redis 使用的过期删除策略是惰性删除+定期删除这两种策略配和使用。

Redis的过期KEY删除策略有两种:

  • 惰性删除

  • 周期删除或定期删除

惰性删除

  • 顾名思义就是TTL过期后不会立刻删除,惰性删除策略的做法是,不主动删除过期键,而是在访问使用一个key的时候,判断当前key有没有设置TTL过期时间,如果有,则检查该key的存活时间,如果发现key已经过期才执行删除操作。 

惰性删除策略的优缺点:

优点:
  • 因为每次访问时,才会检查该key是否过期,因此惰性删除策略可以节省CPU资源,对CPU时间最友好。
缺点:
  • 如果一个key已经过期,而这个key又仍然保留在数据库中,那么只要这个过期key一致没有被访问,它所占用的内存就不会释放,会造成一定的内存空间浪费,所以惰性删除策略对内存不友好   =>   这不就是会导致内存泄漏吗???

周期删除 / 定期删除策略

  • 顾名思义就是通过一个定时任务,每隔一段时间周期性的从数据库中抽取一定数量的key进行检查,并删除其中的过期key。

Redis默认会每秒进行10次过期检查(此配置可以通过Redis的配置文件redis.conf进行配置,配置键为hz,它的默认值是hz 10),每次检查数据库并不是遍历过期字典中的所有key,而是从数据库中随机抽取一定数量的key进行过期检查:

  1. 从过期字典中随机抽取20个key;
  2. 检查这20个key是否过期,并删除已过期的key;
  3. 如果本轮检查的已过期key的数量,超过5个(5 / 20 = 1 / 4 = 25%),也就是「已过期 key 的数量」占比「随机抽取 key 的数量」大于 25%,则继续随机抽查,重复步骤1;如果已过期的key的比例小于25%,则停止继续删除过期key,退出本轮检查,然后等待下一轮再检查。 

可以看到,定期删除是一个循环的流程

Redis为了保证定期删除不会出现循环过度,导致线程卡死现象,为此增加了定期删除循环流程的时间上限,默认不会超过25ms,超出时间限制则退出。 

定期删除策略的优缺点

优点:
  • 定期删除是Redis的主动删除策略,它可以确保过期key能够及时被删除
缺点:
  • 会占用CPU资源去扫描key,可能会影响到Redis的性能 

可以看到,惰性删除策略和定期删除策略都有各自的优缺点,所以Redis选择「惰性删除+定期删除」这两种策略配和使用,以求在合理使用 CPU 时间和避免内存浪费之间取得平衡。 

如果过期键没有被访问,而定期删除又跟不上新键产生的速度,内存不就慢慢耗尽了吗? 

内存淘汰策略

内存淘汰:

  • 就是当Redis的内存使用达到设置的阈值时,Redis就会主动挑选部分key删除以释放更多内存的流程,这就叫做内存淘汰机制。

内存淘汰时机

当内存达到阈值时执行内存淘汰,但问题是Redis什么时候会去判断内存是否达到阈值呢?

  • Redis每次执行任何命令时,都会判断内存是否达到阈值。

当Redis内存不足时会怎么做?

  • 这取决于配置的内存淘汰策略,Redis支持很多种内存淘汰策略,例如LRU、LFU、Random,但默认的策略是直接决绝新的写入请求,而如果设置了其它策略,则会在每次执行命令后判断内存占用是否达到阈值,如果达到阈值则会基于配置的内存淘汰策略尝试进行内存淘汰,直到占用内存小于阈值为止。 

Redis 内存淘汰策略有哪些? 

Redis支持内存淘汰,配置参数maxmemory_policy决定了内存淘汰策略,这个参数一共有8个枚举值,也就是说Redis内存淘汰策略共有8种这八种策略大体分为「不进行数据淘汰」和「进行数据淘汰」两类策略:

1. 不进行数据淘汰的策略

  • noeviction(Redis3.0之后,默认的内存淘汰策略) :禁止删除数据,它表示当Redis的运行内存超过最大设置内存时,也就是当Redis内存满时,不淘汰任何键值对数据,而是不再提供服务,不允许写入新数据,Redis的写命令会直接返回错误信息(但是读命令还是可以正常返回)。

2. 进行数据淘汰的策略

针对「进行数据淘汰」这一类策略,又可以细分为「在设置了过期时间的数据中进行淘汰」和「在所有数据范围内进行淘汰」这两类策略。 在设置了过期时间的数据中进行淘汰:

  • volatile-random随机淘汰设置了过期时间的任意键值 - 从已设置过期时间的数据集中任意选择数据淘汰;
  • volatile-ttl从已设置过期时间的数据集中挑选将要过期的数据淘汰:比较key的剩余TTL值,TTL越小越先被淘汰。
  • volatile-lru(Redis3.0 之前,默认的内存淘汰策略):LRU(Least Recently Used),最近最久未使用,利用LRU算法淘汰所有设置了TTL过期时间的键值中,最久未使用的键值;
  • volatile-lfu(Redis 4.0 后新增的内存淘汰策略):LFU(Least Frequently Used),最少频率使用,淘汰所有设置了TTL过期时间的键值中,最少使用的键值;

在所有数据范围内进行淘汰:

  • allkeys-random:对全体key,随机进行淘汰;
  • allkeys-lruLRU(Least Recently Used),最近最久未使用,淘汰全体键值中最久未使用的键值;
  • allkeys-lfuRedis 4.0 后新增的内存淘汰策略)::LFU(Least Frequently Used),最少频率使用,淘汰整个键值中最少使用的键值,即访问频率最低的那个key-value

比较容易混淆的有两个算法:

  • LRU(Least Recently Used),最近最久未使用(根据访问时间淘汰),会选择淘汰最近最少使用的数据,用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
  • LFU(Least Frequently Used),最少频率使用(根据访问频率淘汰),会统计每个key的访问频率,值越小淘汰优先级越高。 

Redis 4.0开始支持基于LFU算法的淘汰策略! 

Redis为什么新增了LFU淘汰策略?

为什么Redis 4.0有了LFU?
  • 比如Redis中的一个键,之前一直都没有被访问过,最近突然被访问了一次,如果使用LRU淘汰策略就很难被淘汰,因为LRU会把它定义为热键;
  • 而使用LFU淘汰策略该key就可能很快被淘汰,因为LRU优先淘汰最近未被使用的,而LFU淘汰的是最近访问频率最低的。
  • LFU比LRU淘汰更精确,有助于提升Redis的缓存命中率。 

Redis怎么知道某个KEY的最后一次访问时间或者是访问频率呢? 

  • redisObject结构体当中的lru就是记录最近一次访问时间和访问频率的,以低8位无符号数字来记录逻辑访问次数。
  • 逻辑访问次数又是怎么回事呢?8位无符号数字最大才255,访问次数超过255怎么办?

逻辑访问次数是如何计算的?

  • 由于记录访问次数的只有8bit,即便是无符号数,最大值只有255,不可能记录真实的访问次数,因此LFU的访问次数之所以叫做逻辑访问次数,是因为并不是每次key被访问都计数,Redis统计的其实是逻辑访问次数,这其中是一个计算公式,会根据当前的访问次数做计算,结果要么是次数 + 1,要么是次数不变,且最大不超过255,除此以外,逻辑访问次数还有一个衰减周期,访问次数会随时间衰减,默认为1分钟,即每隔1分钟逻辑访问次数会 -1,这样逻辑访问次数就能基本反映出一个key的访问热度了。

 显然LFU的基于访问频率的统计更符合我们的淘汰目标,因此官方推荐使用LFU算法。 

内存淘汰用到的是LRU算法吗?

  • 嗯...Redis使用的是近似LRU算法,传统LRU算法的实现需要一个双向链表来记录数据最近被访问的顺序,最新操作的键会被移动到表头,当需要内存淘汰时,只需要删除链表尾部的数据即可,因为链表尾部的元素就代表最久未被使用的元素。 
  • 但是Redis中的KEY可能有数百万甚至更多,出于节省内存的考虑,Redis的LRU算法并非完整的实现,Redis的算法并不是真正的LRU,而是一种基于抽样的近似LRU算法!
  • Redis采用的是抽样法,即每次抽样一定数量(maxmemory-samples)的key,然后和目前维持的淘汰候选池综合比较,然后基于内存策略做排序,找出淘汰优先级最高的,删除这个key,这就使得算法的结果更接近于真正的LRU算法了,特别是在抽样值较高的情况下(例如10),可以达到与真正的LRU接近的结果。

当Redis作为缓存使用的时候,推荐使用allkeys-lru淘汰策略,该策略会将最近最久未使用的key淘汰,像这种key后期命中的概率也最低,所以将其淘汰。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1365540.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux - No space left on device

问题描述 No space left on device 原因分析 说明在服务器设备上的存储空间已经满了&#xff0c;不能再上传或者新建文件夹或者文件等。 解决方案 确认查看服务器系统的磁盘使用情况是否是真的已经没有剩余空间&#xff0c;复制下面命令在服务器上运行&#xff0c;然后发现如果…

CSS 彩虹按钮效果

<template><view class"content"><button class"btn">彩虹按钮</button></view> </template><script></script><style>body{background-color: #000;}.content {margin-top: 300px;}.btn {width: 1…

jenkins忘记密码后的操作

1、先停止 jenkins 服务 systemctl stop jenkins 关闭Jenkins服务 或者杀掉进程 ps -ef | grep jenkins &#xff5c;awk {print $2} | grep -v "grep" | xargs kill -9 2、找到 config.xml 文件 find /root -name config.xml3、备份config.xml文件 cp /root/.jen…

添加一个编辑的小功能(PHP的Laravel)

一个编辑的按钮可以弹出会话框修改断更天数 前台 加一个编辑按钮的样式&#xff0c;他的名字是固定好的 之前有人封装过直接用就好&#xff0c;但是一定放在class里面&#xff0c;不要放在id里面 看见不认识的方法一定要去看里面封装的是什么 之前就是没有看&#xff0c;所以…

包含自动轮播、点击切换、显示图片信息和页码方框显示码数的 HTML 和 JavaScript 示例:

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>轮播图</title><style>#carousel-conta…

hfish蜜罐docker部署

centos 安装 docker-CSDN博客Docker下载部署 Docker是我们推荐的部署方式之一&#xff0c;当前的版本拥有以下特性&#xff1a; 自动升级&#xff1a;每小时请求最新镜像进行升级&#xff0c;升级不会丢失数据。数据持久化&#xff1a;在宿主机/usr/share/hfish目录下建立dat…

AI ppt生成器 Tome

介绍 一款 AI 驱动的 PPT/幻灯片内容辅助生成工具。只需要输入一个标题或者一段特定的描述&#xff0c;AI 便会自动生成一套包括标题、大纲、内容、配图的完整 PPT。 Tome平台只需要用户输入一句话&#xff0c;就可以自动生成完整的PPT&#xff0c;包括文字和图片。功能非常强…

[AutoSar]基础部分 RTE 04 数据类型的定义及使用

目录 关键词平台说明一、数据类型分类二、Adt三、Idt四、Base 数据类型五、units六、compu methods七、data constraint 关键词 嵌入式、C语言、autosar、Rte 平台说明 项目ValueOSautosar OSautosar厂商vector芯片厂商TI编程语言C&#xff0c;C编译器HighTec (GCC) 一、数据…

浅谈对Promise的理解。

一、Promise定义 JS中用于处理异步操作的编程模式。一个Promise是一个代理&#xff0c;它代表一个创建Promise时不一定已知的值。它允许我们将处理的程序与异步操作的最终成功值或失败值原因想关联起来。这使得异步方法可以像同步方法一样返回值&#xff1a;异步方法不会立即返…

【数据库分库分表思路】

一、数据切分介绍 关系型数据库本身比较容易成为系统瓶颈&#xff0c;单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后&#xff0c;由于查询维度较多&#xff0c;即使添加从库、优化索引&#xff0c;做很多操作时性能仍下降严重。此时就要考虑对其进…

JavaScript 中的数组过滤

在构建动态和交互式程序时&#xff0c;您可能需要添加一些交互式功能。例如&#xff0c;用户单击按钮以筛选一长串项目。 您可能还需要处理大量数据&#xff0c;以仅返回与指定条件匹配的项目。 在本文中&#xff0c;您将学习如何使用两种主要方法在 JavaScript 中过滤数组。…

4.2V线性500mA充电管理芯片WT4054

4.2V线性500mA充电管理芯片WT4054 WT4054&#xff0c;一款强大而小巧的锂电池充电IC&#xff0c;为你的便携式设备提供无忧充电。其SOT-23-5L封装小巧轻便&#xff0c;所占空间极小&#xff0c;而其强大的功能将为你的设备提供稳定、高效的电量供应。 这款充电器拥有众多令人惊…

第二证券:交易商协会优化 债券持有人集体行动机制

1月2日&#xff0c;交易商协会称&#xff0c;为更好发挥持有人集体行动机制在债券风险及违约处置中的重要作用&#xff0c;交易商协会组织商场成员修订了《银行间债券商场非金融企业债务融资东西持有人会议规程》《银行间债券商场非金融企业债务融资东西附和收集操作指引》&…

汪林望教授将于每周三以互动问答直播形式教您如何用龙讯旷腾计算软件PWmat计算不同材料性质

打开VX→搜索“汪林望计算讲座”&#xff0c;关注汪老师的频道&#xff0c;每周三下午16:00我们准时直播&#xff01; 大家提前准备好问题&#xff0c;可直接提问讨论&#xff0c;当面请教 汪林望教授 中科院半导体所首席科学家 北京龙讯旷腾科技有限公司创始人 美国劳伦斯…

Linux下配置静态ip地址

问题&#xff1a;虚拟机重启后ip地址动态更新&#xff0c;导致连shell十分麻烦 解决&#xff1a; 1. 进入配置文件 vi /etc/sysconfig/network-scripts/ifcfg-ens33 2.1 修改配置 BOOTPROTOstatic ONBOOTyes2.2 新增配置 #ip地址(自定义) IPADDR192.168.149.131 #子网掩码 …

C++入门教程,C++基础教程(第一部分:从C到C++)七

由C语言发展而来的一种面向对象的编程语言。 第一部分、从C语言到C 本章讲述 C 语言的简史&#xff0c;以及 C 语言中与面向对象关系不大、C语言中没有的特性。这些特性能够增加编程的便利性&#xff0c;提高程序的可扩充性。 十三、如何规范地使用C内联函数 inline 关键字…

Marching Cubes算法再回顾

1,确定包含等值面的体元 首先介绍一下 体元的概念&#xff0c;体元是三维图像中由相邻的八个体素点组成的正方体方格&#xff0c;英语也叫 Cube&#xff0c;体元中角点函数值分为两种情况&#xff0c;一种是大于等于给定等值面的值 C0 ,则将角点设为 1 称该角点在等值面内部&a…

在线数字文档签名平台DocuSeal

什么是 DocuSeal &#xff1f; DocuSeal 是一个开源平台&#xff0c;提供安全高效的数字文档签名和处理。允许你创建、填写和签署数字文档✍️&#xff0c;易于使用、并针对移动设备做了优化&#xff0c;是 DocuSign 的开源替代方案。可以将 DocuSeal 与您的产品无缝集成&#…

芯课堂 | LVGL基础知识(四)

概述 LVGL按钮是简单的矩形对象。它们源自容器&#xff0c;因此也可以提供布局和配合。此外&#xff0c;可以启用它以在单击时自动进入检查状态。 LVGL按钮讲解 零件和样式 这些按钮仅具有一种主要样式&#xff0c;称为 LV_BTN_PART_MAIN &#xff0c;并且可以使用以下组中的…

centos 8.0 安装sysbench 1.0.17

序号步骤说明执行命令执行结果备注1 下载并解压sysbench-1.0.17.zip sysbench-1.0.17.zip2安装依赖文件 yum install automake libtool -y yum install /usr/include/libpq-fe.h 3安装sysbench cd sysbench-1.0.17 ./autogen.sh ./configure \ --prefix/sysbench \ --with-pgsq…