机器学习模型可解释性的结果分析

news2024/11/15 11:06:26

        模型的可解释性是机器学习领域的一个重要分支,随着 AI 应用范围的不断扩大,人们越来越不满足于模型的黑盒特性,与此同时,金融、自动驾驶等领域的法律法规也对模型的可解释性提出了更高的要求,在可解释 AI 一文中我们已经了解到模型可解释性发展的相关背景以及目前较为成熟的技术方法,本文通过一个具体实例来了解下在 MATLAB 中是如何使用这些方法的,以及在得到解释的数据之后我们该如何理解分析结果。

要分析的机器学习模型

图片

我们以一个经典的人体姿态识别为例,该模型的目标是通过训练来从传感器数据中检测人体活动。传感器数据包括三轴加速计和三轴陀螺仪共6组数据,我们可以通过手机或其他设备收集,训练的目的是识别出人体目前是走路、站立、坐、躺等六种姿态中的哪一种。我们将收集到的数据做进一步统计分析,如求均值和标准差等,最终获得18组数据,即18个特征。然后可以在 MATLAB 中使用分类学习器 App 或者通过编程的形式进行训练,训练得到的模型混淆矩阵如下,可以看到对于某些姿态的识别,模型会存在一定误差。那么接下来我们就通过一系列模型可解释性的方法去尝试解读一下错误判别的来源。

从混淆矩阵中可以看到,模型对于躺 ‘Laying’ 的姿态识别率为 100%,而对于正常走路和上下楼这三种 ‘Walking’ 的姿态识别准确率较低,尤其是上楼和下楼均低于70%。这也符合我们的预期,因为躺的姿态和其他差别较大,而几种走路之间差异较小。

但我们也留意到模型在 ‘Sitting’ 和 ‘Standing’ 之间也产生了较大的误差,考虑到这两者之间的差异,我们想探究一下产生这种分类错误背后的原因。首先我们从图中所示的区域选择了一个样本点 query point,该样本的正确姿态为 ‘Sitting’,但是模型识别成了 ‘Standing’,为便于下一步分析,这里将该样本点所有特征及其取值列举了出来,如前所述一共 18 个,分别对应于原始的6个传感器数据的平均值、标准差以及第一主成分:

图片

使用可解释性方法进行分析

模型可解释性分析的目的在于尝试对机器学习黑盒模型的预测结果给出一个合理的解释,定性地反映出输入数据的各个特征和预测结果之间的关系。对于预测正确的结果,我们可以判断预测过程是否符合我们基于领域知识对该问题的理解,是否有一些偶然因素导致结果碰巧正确,从而保证了模型可以在大规模生产环境下做进一步应用,也可以满足一些法规的要求。

而对于错误的结果,如上文中的姿态识别,我们可以通过可解释性来分析错误结果是由哪些因素导致的,更具体地说,即上述 18 个特征对结果的影响。在此基础上,可以更有针对性地进行特征选择、参数优化等模型改进工作。

接下来我们就尝试用几种不同的可解释性方法来对上文中的 query point 做进一步分析,希望可以找到一些模型分类错误的线索。

2.1 Shapley 值

我们尝试的第一个方法是 Shapley 值,Shapley 值起源于合作博弈理论,它基于严格的理论分析并给出了完整的解释。作为一个局部解释方法,Shapley 值通过对所有可能的特征组合依次计算,从而得到每个特征对预测结果的平均边际贡献,并且这些值是相对于该分类的平均得分而言的。可以简单理解为边际贡献的分值越高,对产生当前预测结果的影响越大。因为有着完善的理论基础且发展时间较长,Shapley 值被广泛应用于金融领域来满足一些法律法规的要求。

我们之前已经了解到 Shapley 值反应的是每个特征的平均边际贡献,并且这些值是相对于该分类的平均得分而言的。首先需要计算出 ‘Standing’ 的平均得分,我们会将数据集中所有点关于 ‘Standing’ 的预测得分取平均得到相应的值,即 0.17577。而我们关注的样本点预测为 ‘Standing’ 的得分为 1,相对较高,它和所有点的平均值相比差值为 0.82423,Shapley 值反应的正是该样本点中每个特征对这个差值的贡献,其总和也正是 0.82423。

图中显示了排行前十的特征及对应的 Shapley 值,我们可以看到 rowmean_body_gyro_z 的值最大,说明它对错误判别的影响最大,当然紧随其后的几个特征的 Shapley 值也较为接近。

特征 rowmean_body_gyro_z的实际含义为z方向陀螺仪的平均值,为什么这个特征可能导致了错误的结果?我们可以接着往下分析。

2.2 PDP - Partial Dependency Plot

Shapley 值虽然很清晰地给出了各个特征对于最终预测结果的贡献,但是我们需要更多的信息来分析错误产生的来源,一个有效的方法是结合 PDP 又称部分依赖图来进行查看。

PDP 是一个全局解释方法,关注单个特征对某一预测结果的整体影响,其思想是假设所有样本中的该特征等于某一个固定值,从而计算出一个预测结果的平均值。当我们将该特征取一系列值时(取值范围仍然来源于样本),便可以绘制出对应的曲线。我们接着 Shapley 值的分析选择特征 rowmean_body_gyro_z(对应数据中的位置为第6个特征),以及 query point 对应的真实分类 ‘Sitting’ 和错误分类 ‘Standing’ 分别绘制 PDP,在 MATLAB 中使用的方法仍然非常简单,具体代码及对应结果如下:

plotPartialDependence(model,6,'Sitting');

% rowmean_body_gyro_z is the 6th predictor in our data table

图片

plotPartialDependence(model,6,'Standing');

图片

根据上图以及第 1 节中 query point 在该特征的实际取值 0.017 可以看出,当该特征的取值接近于 0 时,分类为 ‘Standing’ 的分数较高,而当取值向两端靠拢尤其是接近于 -0.5 时分类为 ‘sitting’ 的分数较高,甚至大于 0.5,这也符合该点的实际预测值。

图片

通过部分依赖图我们对 Shapley 值的分析结果有了更清楚的认识,虽然该样本点的预测结果是错误的,但结合原始数据可以看出,这样的结果是有迹可循且合理的。

          免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLP、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。

下面是部分截图,加我免费领取

目录

一、人工智能免费视频课程和项目

二、人工智能必读书籍

最后,我想说的是,自学人工智能并不是一件难事。只要我们有一个正确的学习方法和学习态度,并且坚持不懈地学习下去,就一定能够掌握这个领域的知识和技术。让我们一起抓住机遇,迎接未来!

上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以点击链接领取 

二维码详情

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1364720.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL复习汇总(图书管理系统)

MySQL图书管理系统(49-94)源码_71.备份book数据库到e盘的mybook.sql文件(备份文件中要求包含建库命令)-CSDN博客 -- 1、 创建一个名称为book的数据库。 -- 2、 打开book数据库 -- 3、 创建数据表分别如下(除外键之外)…

2.1.1 预期年化收益率

跳转到根目录:知行合一:投资篇 已完成: 1、投资&技术   1.1.1 投资-编程基础-numpy   1.1.2 投资-编程基础-pandas   1.2 金融数据处理   1.3 金融数据可视化 2、投资方法论   2.1.1 预期年化收益率 3、投资实证   [3.1 202…

GPT实战系列-简单聊聊LangChain

GPT实战系列-简单聊聊LangChain LLM大模型相关文章: GPT实战系列-ChatGLM3本地部署CUDA111080Ti显卡24G实战方案 GPT实战系列-Baichuan2本地化部署实战方案 GPT实战系列-大话LLM大模型训练 GPT实战系列-探究GPT等大模型的文本生成 GPT实战系列-Baichuan2等大模…

元数据管理平台对比预研 Atlas VS Datahub VS Openmetadata

大家好,我是独孤风。元数据管理平台层出不穷,但目前主流的还是Atlas、Datahub、Openmetadata三家,那么我们该如何选择呢? 本文就带大家对比一下,这三个平台优势劣势。要了解元数据管理平台,先要从架构说起。 正文共&am…

【算法Hot100系列】合并 K 个升序链表

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…

[AutoSar]基础部分 RTE 06 对runnable的触发和SWC的影响

目录 关键词平台说明一、runnable二、RTE的event2.1Mode类型event2.2周期触发类型2.3 数据交互触发 三、internal runnable value四、专属运行区指定五、per_instance memory 关键词 嵌入式、C语言、autosar、Rte 平台说明 项目ValueOSautosar OSautosar厂商vector芯片厂商T…

NGINX 配置本地HTTPS(免费证书)

生成秘钥key,运行: $ openssl genrsa -des3 -out server.key 2048 会有两次要求输入密码,输入同一个即可。输入密码然后你就获得了一个server.key文件。 以后使用此文件(通过openssl提供的命令或API)可能经常回要求输入密码,如果想去除输入密码的步骤可以使用以下命令: $ op…

揭秘六大热门认证考试

六大热门认证考试是什么❓今天为大家详细解读PMP、ACP、CDGA、软考中项、软考高项、NPDP、CISP等热门认证考试,让你不再彷徨👇 1️⃣PMP 👑PMP认证是全qiu公ren的项目管理专业认证,旨在评估项目管理人员在项目过程中所需的知识、技…

基于JAVA的中小学教师课程排课系统 开源项目

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 角色管理模块2.2 课程档案模块2.3 排课位置模块2.4 排课申请模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 角色表3.2.2 课程表3.2.3 排课位置表3.2.4 排课申请表 四、系统展示五、核心代码5.1 查询课程5.2 新增课…

C++/OpenGL应用程序

图像应用程序大部分是 C 编写,OpenGL 调用实现与 3D 渲染相关任务将会使用一些扩展库: GLEW、GLM、GLFW、SOLL2 等。 GLFW 库包含 GLFWwindow 类,我们可以在其上进行 3D 场景绘制。OpenGL 也向我们提供了用于 GLSL 程序载入可编程着色阶段并对其进行编译…

【idea】解决sprintboot项目创建遇到的问题2

本篇是继【idea】解决sprintboot项目创建遇到的问题_java.lang.illegalargumentexception: unable to inst-CSDN博客 目录 一、Dependency com.mysql:mysql-connector-j: not found 二、Could not find artifact org.springframework.boot:spring-boot-maven-plugin:pom:4.0…

Android RecyleView 使用 Gilde 加载图片引发的卡顿问题

Glide 是一个用于 Android 的图片加载和缓存库。它可以帮助开发者快速、高效地加载网络图片、本地文件和视频帧,并且能够自动缓存图片数据,减少网络请求。Glide 具有良好的性能和易用的 API,支持常见的图片加载需求,例如图片压缩、…

springboot 房屋租赁系统

spring boot mysql mybatis 前台后端

JavaWeb——后端之maven

三、后端Web开发 1. Maven 1.1 概念 概念: 一款用于管理和构建java项目的工具,是apache下的一个开源项目 作用: 依赖管理:jar包,避免版本冲突问题——不用手动导jar包,只需要在配置文件(pom…

项目管理工具Maven

Maven Java 是第一大编程语言和开发平台。它有助于企业降低成本、缩短开发周期、推动创新以及改善应用服务。如今全球有数百万开发人员运行着超过 51 亿个 Java 虚拟机,Java 仍是企业和开发人员的首选开发平台。 课程内容的介绍 1. Maven基础内容 2. Maven的依赖管…

使用jasypt进行配置文件加密

1、导入依赖 <dependency> <groupId>com.github.ulisesbocchio</groupId> <artifactId>jasypt-spring-boot-starter</artifactId> <version>3.0.2</version> </dependency> 可能出现的问题 &#xff1a; 依赖不要从pdf中直…

Unity 0GC或者最大限度降低GC方案

文章目录 GC带来的问题性能瓶颈玩家体验受损 优化关键点1. **对象池技术**&#xff1a;2. **内存管理优化**&#xff1a;3. **UGUI优化**&#xff1a;4. **ECS架构下的优化**&#xff1a;5. **资源管理**&#xff1a;6. **自定义数据结构与算法**&#xff1a;7. **开启增量GC&a…

分布式事务理论及Seata实践

分布式事务简介 事务是指作为单个逻辑工作单元执行的一系列操作&#xff0c;要么完全地执行&#xff0c;要么完全地不执行。 事务处理可以确保除非事务性单元内的所有操作都成功完成&#xff0c;否则不会永久更新面向数据的资源。事务的四个特征&#xff08;ACID&#xff09; …

算法第十三天-组合总和Ⅱ

组合总和Ⅱ 题目要求 解题思路 按顺序搜索&#xff0c;设置合理的变量&#xff0c;在搜索的过程中判断是否会出现重复集结果。重点理解对输入数组排序的作用和参考代码中 大剪枝和小剪枝 的意思 这道题域上一问的区别在于&#xff1a; 第39题&#xff1a;candidates中的数字…

构建异地企业网络互联的高效路径

在当今数字化浪潮中&#xff0c;企业的业务拓展已不再受限于地理位置。为了在全球竞争中立于不败之地&#xff0c;越来越多的企业选择在不同城市设立分支机构&#xff0c;构建异地网络&#xff0c;实现高效的协同办公。本文将深入探讨在北上广等经济发达地区&#xff0c;如何通…