【深度学习:Domain Adversarial Neural Networks (DANN) 】领域对抗神经网络简介

news2025/1/10 20:23:25

【深度学习:Domain Adversarial Neural Networks】领域对抗神经网络简介

    • 前言
    • 领域对抗神经网络
      • DANN 模型架构
      • DANN 训练流程
      • DANN示例
    • GPT示例

前言

领域适应(DA)指的是当不同数据集的输入分布发生变化(这种变化通常被称为共变量变化或数据变化)时,加强模型训练的一种过程。图 1 展示了一些简单的例子:(a) 显示了一个变量的均值发生了较大偏移;(b) 显示了一个变量的均值发生了较小偏移;© 显示了一个变量的均值发生了较小偏移,而方差发生了较大偏移。

在这里插入图片描述

图 1.数据移位示例

发展议程有两个相互竞争的目标:

  • 判别能力 --在特定领域内对来自不同类别的数据进行判别的能力
  • 领域不变性 - 衡量跨领域数据类别之间相似性的能力

例如,在一个分类模型中,我们期望模型能够区分不同类别之间的差异——因此需要保持其判别能力。与此同时,如果数据发生变化,我们希望提高分类器的领域不变性,使其在接受来自不同领域的输入时表现良好。(关于严谨的理论处理,我们推荐 Ben-David 等人撰写的 “A theory of learning from different domains”)。

领域自适应的一个使用案例涉及 MNIST 数据集,该数据集由手写数字图像组成。该数据集在文献中无处不在,经常被用作测试模型的基准。还有一个名为 MNIST-M 的数据集,其中添加了不同的背景和数字颜色,如图 2 所示。

在这里插入图片描述

图 2.MNIST 和 MNIST-M 示例

虽然这两个数据集有明显的相似性,但MNIST-M数据集的变化使得输入特征的分布与原始MNIST数据集不同。在这种情况下,即使没有来自 MNIST-M 的标签,也可以使用 DA 来帮助模型在 MNIST 和 MNIST-M 上都表现良好。Ganin 和 Lempitsky 的 "反向传播的无监督领域适应 "一文中描述了这种用例。

另一个有用的 DA 例子是处理生物信号(尤其是神经信号)如何随时间或对象而变化的问题。假设我们想开发一款脑机接口应用,需要对人类受试者移动特定手臂或腿部以控制外部假肢装置的想法进行分类。利用源受试者的脑电信号(图 3),我们通常会开发出一个分类器。但是,将该分类器应用于我们的 "目标对象 "可能会导致性能不佳。领域适配可以让我们在目标受试者身上获得更高的性能,而无需从每个受试者身上收集数据。

在这里插入图片描述

图 3. 使用 DA 来解决神经信号如何随时间变化的问题

实现 DA 最常见的方法之一称为样本重新加权。使用这种方法时,我们通过以下步骤开发域分类器:

  1. 将所有源域样本标记为“0”,将所有目标域样本标记为“1”。 训练一个可以返回预测概率
  2. pi(例如逻辑回归或随机森林)的二元分类器,以区分源数据和目标数据。
  3. 当在源域上进行模型拟合时,使用所得概率来获取源域样本的样本权重,使用:

在这里插入图片描述
这会导致看起来最像目标样本的源样本获得更高的权重。虽然我们普遍认为这种方法是积极的,但它也有一些缺点。挑战之一是确定驱动域分类器的准确度。如果太准确,则没有用,因为目标区域和域区域之间不会重叠。

领域对抗神经网络

如果我们有办法同时使用 DA 和学习标签分类怎么办?具有此功能的一种方法是域对抗神经网络(DANN)。它使用具有类标签的源数据和未标记的目标数据。目标是在对抗性训练过程中使用源数据和目标数据来预测目标数据。

在传统的机器学习中,我们通常假设训练数据和测试数据具有相同的分布。但在实际应用中,这种假设往往不成立。例如,一个在晴天条件下训练的图像识别模型,在雨天条件下可能表现不佳。DANN 正是为了解决这种源域和目标域数据分布不一致的问题。

DANN 的核心思想是通过引入一个额外的域分类器(Domain Classifier),使得模型在学习特征表示时同时减少源域和目标域间的分布差异。这个过程可以看作是一种对抗性训练:主网络试图学习对任务有用且域不可分的特征,而域分类器则试图区分这些特征来自哪个域。

DANN 模型架构

DANN 通常包含三个主要部分:

  • 标签预测器(蓝色)(Feature Extractor): 从输入数据中提取有用的特征。
  • 域分类器(粉色)(Task Classifier): 基于特征提取器提取的特征,进行主任务(如图像分类、语音识别等)的学习。
  • 特征提取器(绿色)(Domain Classifier): 尝试区分特征是来自源域还是目标域。征提取器的目标是学习对两个域都有用的特征,而域分类器则努力区分这些特征的来源。这种设置创建了一种对抗关系,促使特征提取器生成越来越难以区分域的特征。

在这里插入图片描述

图 4. 域对抗神经网络架构

DANN 训练流程

DANN训练流程如图4所示:

  • 来自源或目标的输入特征被馈送到特征提取器。
  • 生成的特征被馈送到:
    • 如果输入来自源域,则标记预测器或域分类器(因为只有该数据具有标签)。
    • 域分类器,如果输入来自目标域(因为该数据上没有标签)。
  • 标签预测器和域分类器经过优化,可使用类熵等损失函数来最小化与其各自分类问题相关的误差。
  • 针对特定于 DANN 的特征提取器执行“特殊”优化(如下所述)。

优化特征提取器可以被看作是在生成对域分类不敏感的特征与对标签预测有用的特征之间寻找最佳平衡点。特征提取器的参数经过优化,以最小化标签预测器的损失并最大化域分类器的损失(涉及梯度反转层的使用)。

在生产中,我们将来自目标域的输入提供给特征提取器,特征提取器创建输入到标签预测器的特征以进行标签预测。没有使用域分类器,因此我们在部署模型时可以忽略图4中的粉色部分。

在训练过程中,DANN 采用了一种类似于 GAN(生成对抗网络)的策略。特征提取器和任务分类器被训练以最大化主任务的性能,而域分类器则被训练以区分不同域的特征。通过这种方式,模型能够学习到既对任务有用又对域具有泛化能力的特征。

DANN示例

让我们看几个例子。第一个示例如图 5 所示,其中包含由 scikit-learn Python 包中的 make_blobs 函数生成的合成数据。左边的数据是源数据,右边的数据是目标数据。 0 级为红色,1 级为绿色。

观察数据如何在源域和目标域之间转移。在每个域内,类可以线性分离,但这种转变使该模型的泛化变得非常复杂。

在这里插入图片描述

图 5. 我们的玩具问题的源数据和目标数据

请注意,我们仅使用源域中的标签进行训练,并且仅使用目标域中的标签来计算性能指标。由于训练过程中未使用目标域标签,因此它们在图 6 中呈灰色显示。

在这里插入图片描述

图 6. 我们的玩具问题的标签使用

传统的神经网络在源域上进行训练,然后在目标域上进行测试,其准确率达到 55%。但是,如果我们包含域分类器并使用 DANN 训练过程,则最终的目标域准确率将高达 95%,这证明了 DANN 过程的价值。

一个更真实的例子来自研究生院的自然语言处理 (NLP) 课程项目。其目标是确定来自 Android 论坛的问题对是否相似。不过,带有标记对的训练数据均来自 AskUbuntu 论坛。这个问题非常适合 DANN 架构和训练过程。

当不使用 DANN 训练过程时(即仅使用 AskUbuntu 论坛数据进行训练,然后在 Android 数据上测试模型),曲线下面积 (AUC) 为 0.61。当使用DANN框架及其训练过程时(训练中使用AskUbuntu数据输入和标签以及Android数据输入;不使用Android标签),AUC增加到0.69。当 Android 论坛数据中的少量标签被添加到 DANN 训练过程中时,AUC 增加到 0.76,这是一个很大的改进。

在现实世界中,我们可能没有用于计算指标的目标域的标签。由于我们不想在不计算样本外性能指标的情况下将模型投入生产,因此可以手动标记目标域中的少量数据以用于评估。

我们相信这样的方法可以集成到 ImageNet 或 ULMFiT 等训练模型中,这些模型经常用作预训练模型。使用DANN训练过程可能会生成更多具有领域不变性的模型,从而更好地适应特定的应用程序。

最近,DANN 架构的改进已经发布,我们建议感兴趣的读者探索生成对抗网络 (GAN) 的新发展。尽管如此,即使在最新的工作中,这里描述的对抗性训练过程仍然是 DA 的关键组成部分。

GPT示例

假设我们有一个图像识别任务,源域是室内照片,目标域是室外照片。在这种情况下,DANN 会试图学习在这两个域都有效的特征表示,同时减少由于场景差异(如光照、背景等)引起的性能下降。

为了更好地理解这个概念,我们可以生成一张示意图,展示 DANN 在处理室内和室外图像时的特征提取和分类过程。

在这里插入图片描述
这张图展示了Domain Adversarial Neural Network(DANN)在图像识别任务中的工作原理。您可以看到,图中描绘了两种不同的域:室内和室外场景。特征提取器位于中心,从室内和室外图像中提取特征。这些特征随后被分为两个不同的分类器:任务分类器和域分类器。任务分类器专注于识别图像中的对象,而域分类器则试图区分图像是属于室内还是室外场景。这种结构有助于模型在不同的环境中都能有效地识别和分类图像。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1363924.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis概览

Redis存储是Key-Value结构的数据,其中Key是字符串类型,Value有5种常见的数据类型 字符串 String 哈希 hash 列表 list 集合 set 有序集合 sorted set / zset 各种数据类型的特性 字符串操作命令 : ● SET ke…

解决Vue3 中Echarts数据更新渲染不上问题

解决办法就是让Dom节点重新渲染 定义一个变量 const postLoading ref(true); 请求数据前dom节点不渲染,获取完数据重新渲染

2024年1月阿里云服务器租用价格表_优惠活动大全

2024年1月最新阿里云服务器租用价格表,云服务器ECS经济型e实例2核2G、3M固定带宽99元一年、轻量应用服务器2核2G3M带宽轻量服务器一年61元,2核4G4M带宽轻量服务器一年165元12个月、2核4G服务器30元3个月,云服务器ECS可以选择经济型e实例、通用…

静态网页设计——中医中药网(HTML+CSS+JavaScript)(dw、sublime Text、webstorm、HBuilder X)

前言 声明:该文章只是做技术分享,若侵权请联系我删除。!! 感谢大佬的视频:https://www.bilibili.com/video/BV11e411i7g8/?vd_source5f425e0074a7f92921f53ab87712357b 源码:https://space.bilibili.com…

三种主流流协议的浏览器播放解决方案

三种主流流协议的浏览器播放解决方案 流协议介绍 主流的流协议(streaming protocol)包括HLS、RTMP、RTSP,下面依次介绍下三种视频流。 HLS HLS(Http Live Streaming) 是一个由苹果公司提出的基于HTTP的流媒体网络传输协议&…

LeetCode-重复的子字符串(459)

题目描述: 给定一个非空的字符串 s ,检查是否可以通过由它的一个子串重复多次构成。 思路一: 使用枚举的方法。首先因为字符串s有一个子串重复多次构成,那么s的长度len与子串的长度subLen应该成倍数关系,并且在s中索…

C语言 B树的分析与实现

本文主要说明了B树的概念、应用以及如何用C语言实现B树。 概述 有使用过数据库的朋友都知道,数据库需要存储大量的数据,并且查询数据的性能也需要一定的保证。那么数据库的底层数据结构是如何实现的呢,就是我们要讨论的B树和B树&#xff0c…

ConcurrentHashMap的原理分析学习

ConcurrentHashMap 的初步使用及场景 CHM 的使用 ConcurrentHashMap 是 J.U.C 包里面提供的一个线程安全并且高效的 HashMap,所以ConcurrentHashMap 在并发编程的场景中使用的频率比较高,那么这一节课我们就从ConcurrentHashMap 的使用上以及源码层面来…

乐理燥废笔记

乐理燥废笔记 文章目录 终止式小调音阶转调不协和和弦进行大小转调1251 1451转调我的霹雳猫阿诺三全音代理五声音阶又怎样和弦附录:压缩字符串、大小端格式转换压缩字符串浮点数压缩Packed-ASCII字符串 大小端转换什么是大端和小端数据传输中的大小端总结大小端转换…

设置代理IP地址对网络有什么影响?爬虫代理IP主要有哪些作用?

在互联网的广泛应用下,代理IP地址成为了一种常见的网络技术。代理IP地址可以改变用户的上网行为,进而影响网络访问的速度和安全性。本篇文章将探讨设置代理IP地址对网络的影响,以及爬虫代理IP的主要作用。 首先,让我们来了解一下代…

基于java,springboot的论旅游管理系统设计与实现

环境以及简介 基于java,springboot的论旅游管理系统设计与实现,Java项目,SpringBoot项目,含开发文档,源码,数据库以及ppt 源码下载 环境配置: 框架:springboot JDK版本:JDK1.8 服…

树莓派4B使用ncnn部署yolov5-Lite,推理耗时 247ms 包含前后处理

一. 引言 最近在玩树莓派,想在树莓派上不是一个目标检测算法,大致看了一下,目前开源的大家都在使用yolov5-Lite,使用ncnn去推理加速,于是自己也尝试部署,在此记录一下,个人踩的坑。 二. 版本选…

【算法笔记】状态机dp

状态机dp概述 当一个事件涉及的过程的考虑并且方案数的考虑比较繁琐时,我们可以尝试用状态机的思想去考虑这个问题,将这个问题简化,就是去考虑一个对象他所具有的几种状态。 状态机主要考虑一下两个方面:状态和转移 状态其实也…

如何在Ubuntu安装SVN服务并结合cpolar实现公网TCP地址远程访问本地服务

文章目录 前言1. Ubuntu安装SVN服务2. 修改配置文件2.1 修改svnserve.conf文件2.2 修改passwd文件2.3 修改authz文件 3. 启动svn服务4. 内网穿透4.1 安装cpolar内网穿透4.2 创建隧道映射本地端口 5. 测试公网访问6. 配置固定公网TCP端口地址6.1 保留一个固定的公网TCP端口地址6…

Mysql与Redis如何保证数据一致性问题

目录 一、Mysql与Redis同步数据是否存在延迟呢? 二、如何保证一致性? 2.1、第一种方式:手动编码 2.2、第二种方式:MQ异步更新 2.3、第三种方式:binlog同步数据 2.4、第四种方式:双写一致性 2.5、第五…

mysql之视图mysql连接案例索引

文章目录 一、视图1.1 含义1.2 操作1.2.1 创建视图1.2.2 视图的修改1.2.3 删除视图1.2.4 查看视图 二、连接案例01)查询" 01 "课程比" 02 "课程成绩高的学生的信息及课程分数02)查询同时存在" 01 "课程和" 02 "课程的情况03&#xff0…

SpringMVC-@RequestMapping注解

0. 多个方法对应同一个请求 RequestMapping("/")public String toIndex(){return "index";}RequestMapping("/")public String toIndex2(){return "index";}这种情况是不允许的,会报错。 1. 注解的功能 RequestMapping注…

Java面试之集合篇

前言 本篇主要总结JAVA面试中关于集合相关的高频面试题。本篇的面试题基于网络整理以及自己的总结编辑。在不断的完善补充哦。欢迎小伙伴们在评论区发表留言哦! 1、基础 1.1、Java 集合框架有哪些? Java 集合框架,大家可以看看 《Java 集…

Latex + Overleaf 论文写作新手笔记

.tex 文件main.tex 文件 Latex 的文档层次结构不同文档类型的层次结构report 6 层结构实例article 5 层结构实例 Latex 语法图表插入与引用使用 figure 环境来插入图片使用 ref 命令来引用已有的图表格的插入与引用 代码块列表无序列表 itemize有序列表 enumerate 学位论文项目…

利用Type类来获得字段名称(Unity C#中的反射)

使用Type类以前需要引用反射的命名空间: using System.Reflection; 以下是完整代码: public class ReflectionDemo : MonoBehaviour {void Start(){A a new A();B b new B();A[] abArraynew A[] { a, b };foreach(A v in abArray){Type t v.GetTyp…