秋招复习之树

news2024/11/24 10:41:15

目录

前言

1 二叉树

二叉树常见术语 

二叉树基本操作

 初始化二叉树

插入与删除节点

常见二叉树类型

1. 完美二叉树

2. 完全二叉树

3. 完满二叉树

4. 平衡二叉树

二叉树的退化

2  二叉树遍历

层序遍历

代码实现

复杂度分析

前序、中序、后序遍历

复杂度分析

3 二叉树数组表示

表示完美二叉树

优点与局限性

4 二叉搜索树

二叉搜索树的操作

查找节点

插入节点

删除节点

中序遍历有序

二叉搜索树的效率

5 AVL 树

AVL 树常见术语

节点高度

节点平衡因子

AVL 树旋转

1. 右旋

2. 左旋

3. 先左旋后右旋

4. 先右旋后左旋

​编辑5. 旋转的选择

AVL 树常用操作

1. 插入节点

2. 删除节点

3. 查找节点

总结



前言

秋招复习之树。

还可以参考

算法与数据结构之二叉树1(待补充)-CSDN博客

 数据结构与算法之二叉树2-CSDN博客


1 二叉树

「二叉树 binary tree」是一种非线性数据结构,代表“祖先”与“后代”之间的派生关系,体现了“一分为二”的分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含值、左子节点引用和右子节点引用。

/* 二叉树节点类 */
class TreeNode {
    int val;         // 节点值
    TreeNode left;   // 左子节点引用
    TreeNode right;  // 右子节点引用
    TreeNode(int x) { val = x; }
}
/* 二叉树节点结构体 */
struct TreeNode {
    int val;          // 节点值
    TreeNode *left;   // 左子节点指针
    TreeNode *right;  // 右子节点指针
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

二叉树常见术语 

  • 「根节点 root node」:位于二叉树顶层的节点,没有父节点。
  • 「叶节点 leaf node」:没有子节点的节点,其两个指针均指向 None 。
  • 「边 edge」:连接两个节点的线段,即节点引用(指针)。
  • 节点所在的「层 level」:从顶至底递增,根节点所在层为 1 。
  • 节点的「度 degree」:节点的子节点的数量。在二叉树中,度的取值范围是 0、1、2 。
  • 二叉树的「高度 height」:从根节点到最远叶节点所经过的边的数量。
  • 节点的「深度 depth」:从根节点到该节点所经过的边的数量。
  • 节点的「高度 height」:从距离该节点最远的叶节点到该节点所经过的边的数量。

二叉树基本操作

 初始化二叉树

与链表类似,首先初始化节点,然后构建引用(指针)。

// 初始化节点
TreeNode n1 = new TreeNode(1);
TreeNode n2 = new TreeNode(2);
TreeNode n3 = new TreeNode(3);
TreeNode n4 = new TreeNode(4);
TreeNode n5 = new TreeNode(5);
// 构建节点之间的引用(指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
/* 初始化二叉树 */
// 初始化节点
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
// 构建节点之间的引用(指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;

插入与删除节点

TreeNode P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1.left = P;
P.left = n2;
// 删除节点 P
n1.left = n2;
/* 插入与删除节点 */
TreeNode* P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1->left = P;
P->left = n2;
// 删除节点 P
n1->left = n2;

常见二叉树类型

1. 完美二叉树

「完美二叉树 perfect binary tree」(又被称为「满二叉树」)所有层的节点都被完全填满。在完美二叉树中,叶节点的度为 0 ,其余所有节点的度都为 2 ;若树的高度为 ℎ ,则节点总数为 2ℎ+1−1 ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。

2. 完全二叉树

「完全二叉树 complete binary tree」只有最底层的节点未被填满,且最底层节点尽量靠左填充。

3. 完满二叉树

「完满二叉树 full binary tree」除了叶节点之外,其余所有节点都有两个子节点。

4. 平衡二叉树

「平衡二叉树 balanced binary tree」中任意节点的左子树和右子树的高度之差的绝对值不超过1。

二叉树的退化

图展示了二叉树的理想结构与退化结构。当二叉树的每层节点都被填满时,达到“完美二叉树”;而当所有节点都偏向一侧时,二叉树退化为“链表”。

  • 完美二叉树是理想情况,可以充分发挥二叉树“分治”的优势。
  • 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 O(n) 。

2  二叉树遍历

从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。

二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。

层序遍历

「层序遍历 level-order traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。

层序遍历本质上属于「广度优先遍历 breadth-first traversal」,也称「广度优先搜索 breadth-first search, BFS」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。

代码实现

广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。实现代码如下:

/* 层序遍历 */
List<Integer> levelOrder(TreeNode root) {
    // 初始化队列,加入根节点
    Queue<TreeNode> queue = new LinkedList<>();
    queue.add(root);
    // 初始化一个列表,用于保存遍历序列
    List<Integer> list = new ArrayList<>();
    while (!queue.isEmpty()) {
        TreeNode node = queue.poll(); // 队列出队
        list.add(node.val);           // 保存节点值
        if (node.left != null)
            queue.offer(node.left);   // 左子节点入队
        if (node.right != null)
            queue.offer(node.right);  // 右子节点入队
    }
    return list;
}
/* 层序遍历 */
vector<int> levelOrder(TreeNode *root) {
    // 初始化队列,加入根节点
    queue<TreeNode *> queue;
    queue.push(root);
    // 初始化一个列表,用于保存遍历序列
    vector<int> vec;
    while (!queue.empty()) {
        TreeNode *node = queue.front();
        queue.pop();              // 队列出队
        vec.push_back(node->val); // 保存节点值
        if (node->left != nullptr)
            queue.push(node->left); // 左子节点入队
        if (node->right != nullptr)
            queue.push(node->right); // 右子节点入队
    }
    return vec;
}

复杂度分析

  • 时间复杂度为O(n) :所有节点被访问一次,使用O(n)时间,其中 n为节点数量。
  • 空间复杂度为O(n):在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 (n+1)/2 个节点,占用O(n)空间。

前序、中序、后序遍历

相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal」,也称「深度优先搜索 depth-first search, DFS」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。

图展示了对二叉树进行深度优先遍历的工作原理。深度优先遍历就像是绕着整棵二叉树的外围“走”一圈,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。

这里的图理解比左中右好理解。

/* 前序遍历 */
void preOrder(TreeNode root) {
    if (root == null)
        return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    list.add(root.val);
    preOrder(root.left);
    preOrder(root.right);
}

/* 中序遍历 */
void inOrder(TreeNode root) {
    if (root == null)
        return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root.left);
    list.add(root.val);
    inOrder(root.right);
}

/* 后序遍历 */
void postOrder(TreeNode root) {
    if (root == null)
        return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root.left);
    postOrder(root.right);
    list.add(root.val);
}
/* 前序遍历 */
void preOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    vec.push_back(root->val);
    preOrder(root->left);
    preOrder(root->right);
}

/* 中序遍历 */
void inOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root->left);
    vec.push_back(root->val);
    inOrder(root->right);
}

/* 后序遍历 */
void postOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root->left);
    postOrder(root->right);
    vec.push_back(root->val);
}

 深度优先搜索也可以基于迭代实现,有兴趣的可以看看前言提到的两篇文章。

图展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分。

  1. “递”表示开启新方法,程序在此过程中访问下一个节点。
  2. “归”表示函数返回,代表当前节点已经访问完毕。

复杂度分析

  • 时间复杂度为 O(n) :所有节点被访问一次,使用  O(n) 时间。
  • 空间复杂度为 O(n) :在最差情况下,即树退化为链表时,递归深度达到 n ,系统占用 O(n) 栈帧空间。

3 二叉树数组表示

用数组来表示二叉树

表示完美二叉树

给定一棵完美二叉树,我们将所有节点按照层序遍历的顺序存储在一个数组中,则每个节点都对应唯一的数组索引。

根据层序遍历的特性,我们可以推导出父节点索引与子节点索引之间的“映射公式”:若某节点的索引为 i ,则该节点的左子节点索引为 2i+1 ,右子节点索引为 2i+2 。图展示了各个节点索引之间的映射关系。

映射公式的角色相当于链表中的指针。给定数组中的任意一个节点,我们都可以通过映射公式来访问它的左(右)子节点。

为了解决此问题,我们可以考虑在层序遍历序列中显式地写出所有 None 。如图 7-14 所示,这样处理后,层序遍历序列就可以唯一表示二叉树了。示例代码如下:

/* 二叉树的数组表示 */
// 使用 int 的包装类 Integer ,就可以使用 null 来标记空位
Integer[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };
/* 二叉树的数组表示 */
// 使用 int 最大值 INT_MAX 标记空位
vector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};

值得说明的是,完全二叉树非常适合使用数组来表示。回顾完全二叉树的定义,None 只出现在最底层且靠右的位置,因此所有 None 一定出现在层序遍历序列的末尾

这意味着使用数组表示完全二叉树时,可以省略存储所有 None ,非常方便。

以下代码实现了一棵基于数组表示的二叉树,包括以下几种操作。

  • 给定某节点,获取它的值、左(右)子节点、父节点。
  • 获取前序遍历、中序遍历、后序遍历、层序遍历序列。
/* 数组表示下的二叉树类 */
class ArrayBinaryTree {
    private List<Integer> tree;

    /* 构造方法 */
    public ArrayBinaryTree(List<Integer> arr) {
        tree = new ArrayList<>(arr);
    }

    /* 节点数量 */
    public int size() {
        return tree.size();
    }

    /* 获取索引为 i 节点的值 */
    public Integer val(int i) {
        // 若索引越界,则返回 null ,代表空位
        if (i < 0 || i >= size())
            return null;
        return tree.get(i);
    }

    /* 获取索引为 i 节点的左子节点的索引 */
    public Integer left(int i) {
        return 2 * i + 1;
    }

    /* 获取索引为 i 节点的右子节点的索引 */
    public Integer right(int i) {
        return 2 * i + 2;
    }

    /* 获取索引为 i 节点的父节点的索引 */
    public Integer parent(int i) {
        return (i - 1) / 2;
    }

    /* 层序遍历 */
    public List<Integer> levelOrder() {
        List<Integer> res = new ArrayList<>();
        // 直接遍历数组
        for (int i = 0; i < size(); i++) {
            if (val(i) != null)
                res.add(val(i));
        }
        return res;
    }

    /* 深度优先遍历 */
    private void dfs(Integer i, String order, List<Integer> res) {
        // 若为空位,则返回
        if (val(i) == null)
            return;
        // 前序遍历
        if ("pre".equals(order))
            res.add(val(i));
        dfs(left(i), order, res);
        // 中序遍历
        if ("in".equals(order))
            res.add(val(i));
        dfs(right(i), order, res);
        // 后序遍历
        if ("post".equals(order))
            res.add(val(i));
    }

    /* 前序遍历 */
    public List<Integer> preOrder() {
        List<Integer> res = new ArrayList<>();
        dfs(0, "pre", res);
        return res;
    }

    /* 中序遍历 */
    public List<Integer> inOrder() {
        List<Integer> res = new ArrayList<>();
        dfs(0, "in", res);
        return res;
    }

    /* 后序遍历 */
    public List<Integer> postOrder() {
        List<Integer> res = new ArrayList<>();
        dfs(0, "post", res);
        return res;
    }
}
/* 数组表示下的二叉树类 */
class ArrayBinaryTree {
  public:
    /* 构造方法 */
    ArrayBinaryTree(vector<int> arr) {
        tree = arr;
    }

    /* 节点数量 */
    int size() {
        return tree.size();
    }

    /* 获取索引为 i 节点的值 */
    int val(int i) {
        // 若索引越界,则返回 INT_MAX ,代表空位
        if (i < 0 || i >= size())
            return INT_MAX;
        return tree[i];
    }

    /* 获取索引为 i 节点的左子节点的索引 */
    int left(int i) {
        return 2 * i + 1;
    }

    /* 获取索引为 i 节点的右子节点的索引 */
    int right(int i) {
        return 2 * i + 2;
    }

    /* 获取索引为 i 节点的父节点的索引 */
    int parent(int i) {
        return (i - 1) / 2;
    }

    /* 层序遍历 */
    vector<int> levelOrder() {
        vector<int> res;
        // 直接遍历数组
        for (int i = 0; i < size(); i++) {
            if (val(i) != INT_MAX)
                res.push_back(val(i));
        }
        return res;
    }

    /* 前序遍历 */
    vector<int> preOrder() {
        vector<int> res;
        dfs(0, "pre", res);
        return res;
    }

    /* 中序遍历 */
    vector<int> inOrder() {
        vector<int> res;
        dfs(0, "in", res);
        return res;
    }

    /* 后序遍历 */
    vector<int> postOrder() {
        vector<int> res;
        dfs(0, "post", res);
        return res;
    }

  private:
    vector<int> tree;

    /* 深度优先遍历 */
    void dfs(int i, string order, vector<int> &res) {
        // 若为空位,则返回
        if (val(i) == INT_MAX)
            return;
        // 前序遍历
        if (order == "pre")
            res.push_back(val(i));
        dfs(left(i), order, res);
        // 中序遍历
        if (order == "in")
            res.push_back(val(i));
        dfs(right(i), order, res);
        // 后序遍历
        if (order == "post")
            res.push_back(val(i));
    }
};

优点与局限性

二叉树的数组表示主要有以下优点。

  • 数组存储在连续的内存空间中,对缓存友好,访问与遍历速度较快。
  • 不需要存储指针,比较节省空间。
  • 允许随机访问节点。

然而,数组表示也存在一些局限性。

  • 数组存储需要连续内存空间,因此不适合存储数据量过大的树。
  • 增删节点需要通过数组插入与删除操作实现,效率较低。
  • 当二叉树中存在大量 None 时,数组中包含的节点数据比重较低,空间利用率较低。

4 二叉搜索树

「二叉搜索树 binary search tree」满足以下条件。

  1. 对于根节点,左子树中所有节点的值 < 根节点的值 < 右子树中所有节点的值。
  2. 任意节点的左、右子树也是二叉搜索树,即同样满足条件 1. 。

二叉搜索树的操作

将二叉搜索树封装为一个类 BinarySearchTree ,并声明一个成员变量 root ,指向树的根节点。

查找节点

给定目标节点值 num ,可以根据二叉搜索树的性质来查找。如图 7-17 所示,我们声明一个节点 cur ,从二叉树的根节点 root 出发,循环比较节点值 cur.val 和 num 之间的大小关系。

  • 若 cur.val < num ,说明目标节点在 cur 的右子树中,因此执行 cur = cur.right 。
  • 若 cur.val > num ,说明目标节点在 cur 的左子树中,因此执行 cur = cur.left 。
  • 若 cur.val = num ,说明找到目标节点,跳出循环并返回该节点。

二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 O(log⁡n) 时间。示例代码如下:

/* 查找节点 */
TreeNode search(int num) {
    TreeNode cur = root;
    // 循环查找,越过叶节点后跳出
    while (cur != null) {
        // 目标节点在 cur 的右子树中
        if (cur.val < num)
            cur = cur.right;
        // 目标节点在 cur 的左子树中
        else if (cur.val > num)
            cur = cur.left;
        // 找到目标节点,跳出循环
        else
            break;
    }
    // 返回目标节点
    return cur;
}
/* 查找节点 */
TreeNode *search(int num) {
    TreeNode *cur = root;
    // 循环查找,越过叶节点后跳出
    while (cur != nullptr) {
        // 目标节点在 cur 的右子树中
        if (cur->val < num)
            cur = cur->right;
        // 目标节点在 cur 的左子树中
        else if (cur->val > num)
            cur = cur->left;
        // 找到目标节点,跳出循环
        else
            break;
    }
    // 返回目标节点
    return cur;
}

插入节点

给定一个待插入元素 num ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作流程如图所示。

  1. 查找插入位置:与查找操作相似,从根节点出发,根据当前节点值和 num 的大小关系循环向下搜索,直到越过叶节点(遍历至 None )时跳出循环。
  2. 在该位置插入节点:初始化节点 num ,将该节点置于 None 的位置。

在代码实现中,需要注意以下两点。

  • 二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。
  • 为了实现插入节点,我们需要借助节点 pre 保存上一轮循环的节点。这样在遍历至 None 时,我们可以获取到其父节点,从而完成节点插入操作。
/* 插入节点 */
void insert(int num) {
    // 若树为空,则初始化根节点
    if (root == null) {
        root = new TreeNode(num);
        return;
    }
    TreeNode cur = root, pre = null;
    // 循环查找,越过叶节点后跳出
    while (cur != null) {
        // 找到重复节点,直接返回
        if (cur.val == num)
            return;
        pre = cur;
        // 插入位置在 cur 的右子树中
        if (cur.val < num)
            cur = cur.right;
        // 插入位置在 cur 的左子树中
        else
            cur = cur.left;
    }
    // 插入节点
    TreeNode node = new TreeNode(num);
    if (pre.val < num)
        pre.right = node;
    else
        pre.left = node;
}
/* 插入节点 */
void insert(int num) {
    // 若树为空,则初始化根节点
    if (root == nullptr) {
        root = new TreeNode(num);
        return;
    }
    TreeNode *cur = root, *pre = nullptr;
    // 循环查找,越过叶节点后跳出
    while (cur != nullptr) {
        // 找到重复节点,直接返回
        if (cur->val == num)
            return;
        pre = cur;
        // 插入位置在 cur 的右子树中
        if (cur->val < num)
            cur = cur->right;
        // 插入位置在 cur 的左子树中
        else
            cur = cur->left;
    }
    // 插入节点
    TreeNode *node = new TreeNode(num);
    if (pre->val < num)
        pre->right = node;
    else
        pre->left = node;
}

与查找节点相同,插入节点使用O(log⁡n) 时间。

删除节点

先在二叉树中查找到目标节点,再将其删除。与插入节点类似,我们需要保证在删除操作完成后,二叉搜索树的“左子树 < 根节点 < 右子树”的性质仍然满足。因此,我们根据目标节点的子节点数量,分 0、1 和 2 三种情况,执行对应的删除节点操作。

当待删除节点的度为 0 时,表示该节点是叶节点,可以直接删除。

当待删除节点的度为 1 时,将待删除节点替换为其子节点即可。

当待删除节点的度为 2 时,我们无法直接删除它,而需要使用一个节点替换该节点。由于要保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,因此这个节点可以是右子树的最小节点或左子树的最大节点

假设我们选择右子树的最小节点(中序遍历的下一个节点),则删除操作流程如图所示。

  1. 找到待删除节点在“中序遍历序列”中的下一个节点,记为 tmp 。
  2. 用 tmp 的值覆盖待删除节点的值,并在树中递归删除节点 tmp 。

删除节点操作同样使用 O(log⁡n) 时间,其中查找待删除节点需要 O(log⁡n)时间,获取中序遍历后继节点需要 O(log⁡n)时间。示例代码如下:

/* 删除节点 */
void remove(int num) {
    // 若树为空,直接提前返回
    if (root == null)
        return;
    TreeNode cur = root, pre = null;
    // 循环查找,越过叶节点后跳出
    while (cur != null) {
        // 找到待删除节点,跳出循环
        if (cur.val == num)
            break;
        pre = cur;
        // 待删除节点在 cur 的右子树中
        if (cur.val < num)
            cur = cur.right;
        // 待删除节点在 cur 的左子树中
        else
            cur = cur.left;
    }
    // 若无待删除节点,则直接返回
    if (cur == null)
        return;
    // 子节点数量 = 0 or 1
    if (cur.left == null || cur.right == null) {
        // 当子节点数量 = 0 / 1 时, child = null / 该子节点
        TreeNode child = cur.left != null ? cur.left : cur.right;
        // 删除节点 cur
        if (cur != root) {
            if (pre.left == cur)
                pre.left = child;
            else
                pre.right = child;
        } else {
            // 若删除节点为根节点,则重新指定根节点
            root = child;
        }
    }
    // 子节点数量 = 2
    else {
        // 获取中序遍历中 cur 的下一个节点
        TreeNode tmp = cur.right;
        while (tmp.left != null) {
            tmp = tmp.left;
        }
        // 递归删除节点 tmp
        remove(tmp.val);
        // 用 tmp 覆盖 cur
        cur.val = tmp.val;
    }
}
/* 删除节点 */
void remove(int num) {
    // 若树为空,直接提前返回
    if (root == nullptr)
        return;
    TreeNode *cur = root, *pre = nullptr;
    // 循环查找,越过叶节点后跳出
    while (cur != nullptr) {
        // 找到待删除节点,跳出循环
        if (cur->val == num)
            break;
        pre = cur;
        // 待删除节点在 cur 的右子树中
        if (cur->val < num)
            cur = cur->right;
        // 待删除节点在 cur 的左子树中
        else
            cur = cur->left;
    }
    // 若无待删除节点,则直接返回
    if (cur == nullptr)
        return;
    // 子节点数量 = 0 or 1
    if (cur->left == nullptr || cur->right == nullptr) {
        // 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
        TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
        // 删除节点 cur
        if (cur != root) {
            if (pre->left == cur)
                pre->left = child;
            else
                pre->right = child;
        } else {
            // 若删除节点为根节点,则重新指定根节点
            root = child;
        }
        // 释放内存
        delete cur;
    }
    // 子节点数量 = 2
    else {
        // 获取中序遍历中 cur 的下一个节点
        TreeNode *tmp = cur->right;
        while (tmp->left != nullptr) {
            tmp = tmp->left;
        }
        int tmpVal = tmp->val;
        // 递归删除节点 tmp
        remove(tmp->val);
        // 用 tmp 覆盖 cur
        cur->val = tmpVal;
    }
}

中序遍历有序

如图所示,二叉树的中序遍历遵循“左 → 根 → 右”的遍历顺序,而二叉搜索树满足“左子节点 < 根节点 < 右子节点”的大小关系。

这意味着在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:二叉搜索树的中序遍历序列是升序的

利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 �(�) 时间,无须进行额外的排序操作,非常高效。

二叉搜索树的效率

在理想情况下,二叉搜索树是“平衡”的,这样就可以在 log⁡n 轮循环内查找任意节点。

然而,如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为图 7-23 所示的链表,这时各种操作的时间复杂度也会退化为O(n) 。

5 AVL 树

在多次插入和删除操作后,二叉搜索树可能退化为链表。在这种情况下,所有操作的时间复杂度将从 O(log⁡n) 劣化为 O(n) 。

如图所示,经过两次删除节点操作,这棵二叉搜索树便会退化为链表。

再例如,在图所示的完美二叉树中插入两个节点后,树将严重向左倾斜,查找操作的时间复杂度也随之劣化。

1962 年 G. M. Adelson-Velsky 和 E. M. Landis 在论文“An algorithm for the organization of information”中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树不会退化,从而使得各种操作的时间复杂度保持在 O(log⁡n) 级别。换句话说,在需要频繁进行增删查改操作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。

AVL 树常见术语

AVL 树既是二叉搜索树也是平衡二叉树,同时满足这两类二叉树的所有性质,因此也被称为「平衡二叉搜索树 balanced binary search tree」。

节点高度

由于 AVL 树的相关操作需要获取节点高度,因此我们需要为节点类添加 height 变量:

/* AVL 树节点类 */
class TreeNode {
    public int val;        // 节点值
    public int height;     // 节点高度
    public TreeNode left;  // 左子节点
    public TreeNode right; // 右子节点
    public TreeNode(int x) { val = x; }
}
/* AVL 树节点类 */
struct TreeNode {
    int val{};          // 节点值
    int height = 0;     // 节点高度
    TreeNode *left{};   // 左子节点
    TreeNode *right{};  // 右子节点
    TreeNode() = default;
    explicit TreeNode(int x) : val(x){}
};

“节点高度”是指从该节点到它的最远叶节点的距离,即所经过的“边”的数量。需要特别注意的是,叶节点的高度为 0 ,而空节点的高度为 −1 。我们将创建两个工具函数,分别用于获取和更新节点的高度:

/* 获取节点高度 */
int height(TreeNode node) {
    // 空节点高度为 -1 ,叶节点高度为 0
    return node == null ? -1 : node.height;
}

/* 更新节点高度 */
void updateHeight(TreeNode node) {
    // 节点高度等于最高子树高度 + 1
    node.height = Math.max(height(node.left), height(node.right)) + 1;
}
/* 获取节点高度 */
int height(TreeNode *node) {
    // 空节点高度为 -1 ,叶节点高度为 0
    return node == nullptr ? -1 : node->height;
}

/* 更新节点高度 */
void updateHeight(TreeNode *node) {
    // 节点高度等于最高子树高度 + 1
    node->height = max(height(node->left), height(node->right)) + 1;
}

节点平衡因子

节点的「平衡因子 balance factor」定义为节点左子树的高度减去右子树的高度,同时规定空节点的平衡因子为 0 。我们同样将获取节点平衡因子的功能封装成函数,方便后续使用:

/* 获取平衡因子 */
int balanceFactor(TreeNode node) {
    // 空节点平衡因子为 0
    if (node == null)
        return 0;
    // 节点平衡因子 = 左子树高度 - 右子树高度
    return height(node.left) - height(node.right);
}
/* 获取平衡因子 */
int balanceFactor(TreeNode *node) {
    // 空节点平衡因子为 0
    if (node == nullptr)
        return 0;
    // 节点平衡因子 = 左子树高度 - 右子树高度
    return height(node->left) - height(node->right);
}

设平衡因子为 f ,则一棵 AVL 树的任意节点的平衡因子皆满足 −1≤f≤1 。

AVL 树旋转

AVL 树的特点在于“旋转”操作,它能够在不影响二叉树的中序遍历序列的前提下,使失衡节点重新恢复平衡。换句话说,旋转操作既能保持“二叉搜索树”的性质,也能使树重新变为“平衡二叉树”

我们将平衡因子绝对值 >1 的节点称为“失衡节点”。根据节点失衡情况的不同,旋转操作分为四种:右旋、左旋、先右旋后左旋、先左旋后右旋。下面详细介绍这些旋转操作。

1. 右旋

如图所示,节点下方为平衡因子。从底至顶看,二叉树中首个失衡节点是“节点 3”。我们关注以该失衡节点为根节点的子树,将该节点记为 node ,其左子节点记为 child ,执行“右旋”操作。完成右旋后,子树恢复平衡,并且仍然保持二叉搜索树的性质。

如图所示,当节点 child 有右子节点(记为 grand_child )时,需要在右旋中添加一步:将 grand_child 作为 node 的左子节点。

“向右旋转”是一种形象化的说法,实际上需要通过修改节点指针来实现,代码如下所示:

/* 右旋操作 */
TreeNode rightRotate(TreeNode node) {
    TreeNode child = node.left;
    TreeNode grandChild = child.right;
    // 以 child 为原点,将 node 向右旋转
    child.right = node;
    node.left = grandChild;
    // 更新节点高度
    updateHeight(node);
    updateHeight(child);
    // 返回旋转后子树的根节点
    return child;
}
/* 右旋操作 */
TreeNode *rightRotate(TreeNode *node) {
    TreeNode *child = node->left;
    TreeNode *grandChild = child->right;
    // 以 child 为原点,将 node 向右旋转
    child->right = node;
    node->left = grandChild;
    // 更新节点高度
    updateHeight(node);
    updateHeight(child);
    // 返回旋转后子树的根节点
    return child;
}

2. 左旋

相应地,如果考虑上述失衡二叉树的“镜像”,则需要执行图所示的“左旋”操作。

同理,如图所示,当节点 child 有左子节点(记为 grand_child )时,需要在左旋中添加一步:将 grand_child 作为 node 的右子节点。

可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左旋的实现代码:

/* 左旋操作 */
TreeNode leftRotate(TreeNode node) {
    TreeNode child = node.right;
    TreeNode grandChild = child.left;
    // 以 child 为原点,将 node 向左旋转
    child.left = node;
    node.right = grandChild;
    // 更新节点高度
    updateHeight(node);
    updateHeight(child);
    // 返回旋转后子树的根节点
    return child;
}
/* 左旋操作 */
TreeNode *leftRotate(TreeNode *node) {
    TreeNode *child = node->right;
    TreeNode *grandChild = child->left;
    // 以 child 为原点,将 node 向左旋转
    child->left = node;
    node->right = grandChild;
    // 更新节点高度
    updateHeight(node);
    updateHeight(child);
    // 返回旋转后子树的根节点
    return child;
}

3. 先左旋后右旋

对于图中的失衡节点 3 ,仅使用左旋或右旋都无法使子树恢复平衡。此时需要先对 child 执行“左旋”,再对 node 执行“右旋”。

4. 先右旋后左旋

如图所示,对于上述失衡二叉树的镜像情况,需要先对 child 执行“右旋”,再对 node 执行“左旋”。

5. 旋转的选择

图展示的四种失衡情况与上述案例逐个对应,分别需要采用右旋、先左旋后右旋、先右旋后左旋、左旋的操作。

我们通过判断失衡节点的平衡因子以及较高一侧子节点的平衡因子的正负号,来确定失衡节点属于图中的哪种情况。

为了便于使用,我们将旋转操作封装成一个函数。有了这个函数,我们就能对各种失衡情况进行旋转,使失衡节点重新恢复平衡。代码如下所示:

/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode rotate(TreeNode node) {
    // 获取节点 node 的平衡因子
    int balanceFactor = balanceFactor(node);
    // 左偏树
    if (balanceFactor > 1) {
        if (balanceFactor(node.left) >= 0) {
            // 右旋
            return rightRotate(node);
        } else {
            // 先左旋后右旋
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }
    }
    // 右偏树
    if (balanceFactor < -1) {
        if (balanceFactor(node.right) <= 0) {
            // 左旋
            return leftRotate(node);
        } else {
            // 先右旋后左旋
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }
    }
    // 平衡树,无须旋转,直接返回
    return node;
}
/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode *rotate(TreeNode *node) {
    // 获取节点 node 的平衡因子
    int _balanceFactor = balanceFactor(node);
    // 左偏树
    if (_balanceFactor > 1) {
        if (balanceFactor(node->left) >= 0) {
            // 右旋
            return rightRotate(node);
        } else {
            // 先左旋后右旋
            node->left = leftRotate(node->left);
            return rightRotate(node);
        }
    }
    // 右偏树
    if (_balanceFactor < -1) {
        if (balanceFactor(node->right) <= 0) {
            // 左旋
            return leftRotate(node);
        } else {
            // 先右旋后左旋
            node->right = rightRotate(node->right);
            return leftRotate(node);
        }
    }
    // 平衡树,无须旋转,直接返回
    return node;
}

AVL 树常用操作

1. 插入节点

AVL 树的节点插入操作与二叉搜索树在主体上类似。唯一的区别在于,在 AVL 树中插入节点后,从该节点到根节点的路径上可能会出现一系列失衡节点。因此,我们需要从这个节点开始,自底向上执行旋转操作,使所有失衡节点恢复平衡。代码如下所示:

/* 插入节点 */
void insert(int val) {
    root = insertHelper(root, val);
}

/* 递归插入节点(辅助方法) */
TreeNode insertHelper(TreeNode node, int val) {
    if (node == null)
        return new TreeNode(val);
    /* 1. 查找插入位置并插入节点 */
    if (val < node.val)
        node.left = insertHelper(node.left, val);
    else if (val > node.val)
        node.right = insertHelper(node.right, val);
    else
        return node; // 重复节点不插入,直接返回
    updateHeight(node); // 更新节点高度
    /* 2. 执行旋转操作,使该子树重新恢复平衡 */
    node = rotate(node);
    // 返回子树的根节点
    return node;
}
/* 插入节点 */
void insert(int val) {
    root = insertHelper(root, val);
}

/* 递归插入节点(辅助方法) */
TreeNode *insertHelper(TreeNode *node, int val) {
    if (node == nullptr)
        return new TreeNode(val);
    /* 1. 查找插入位置并插入节点 */
    if (val < node->val)
        node->left = insertHelper(node->left, val);
    else if (val > node->val)
        node->right = insertHelper(node->right, val);
    else
        return node;    // 重复节点不插入,直接返回
    updateHeight(node); // 更新节点高度
    /* 2. 执行旋转操作,使该子树重新恢复平衡 */
    node = rotate(node);
    // 返回子树的根节点
    return node;
}

2. 删除节点

类似地,在二叉搜索树的删除节点方法的基础上,需要从底至顶执行旋转操作,使所有失衡节点恢复平衡。代码如下所示:

/* 删除节点 */
void remove(int val) {
    root = removeHelper(root, val);
}

/* 递归删除节点(辅助方法) */
TreeNode removeHelper(TreeNode node, int val) {
    if (node == null)
        return null;
    /* 1. 查找节点并删除 */
    if (val < node.val)
        node.left = removeHelper(node.left, val);
    else if (val > node.val)
        node.right = removeHelper(node.right, val);
    else {
        if (node.left == null || node.right == null) {
            TreeNode child = node.left != null ? node.left : node.right;
            // 子节点数量 = 0 ,直接删除 node 并返回
            if (child == null)
                return null;
            // 子节点数量 = 1 ,直接删除 node
            else
                node = child;
        } else {
            // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
            TreeNode temp = node.right;
            while (temp.left != null) {
                temp = temp.left;
            }
            node.right = removeHelper(node.right, temp.val);
            node.val = temp.val;
        }
    }
    updateHeight(node); // 更新节点高度
    /* 2. 执行旋转操作,使该子树重新恢复平衡 */
    node = rotate(node);
    // 返回子树的根节点
    return node;
}
/* 删除节点 */
void remove(int val) {
    root = removeHelper(root, val);
}

/* 递归删除节点(辅助方法) */
TreeNode *removeHelper(TreeNode *node, int val) {
    if (node == nullptr)
        return nullptr;
    /* 1. 查找节点并删除 */
    if (val < node->val)
        node->left = removeHelper(node->left, val);
    else if (val > node->val)
        node->right = removeHelper(node->right, val);
    else {
        if (node->left == nullptr || node->right == nullptr) {
            TreeNode *child = node->left != nullptr ? node->left : node->right;
            // 子节点数量 = 0 ,直接删除 node 并返回
            if (child == nullptr) {
                delete node;
                return nullptr;
            }
            // 子节点数量 = 1 ,直接删除 node
            else {
                delete node;
                node = child;
            }
        } else {
            // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
            TreeNode *temp = node->right;
            while (temp->left != nullptr) {
                temp = temp->left;
            }
            int tempVal = temp->val;
            node->right = removeHelper(node->right, temp->val);
            node->val = tempVal;
        }
    }
    updateHeight(node); // 更新节点高度
    /* 2. 执行旋转操作,使该子树重新恢复平衡 */
    node = rotate(node);
    // 返回子树的根节点
    return node;
}

3. 查找节点

AVL 树的节点查找操作与二叉搜索树一致,在此不再赘述。


总结

  • 二叉树是一种非线性数据结构,体现“一分为二”的分治逻辑。每个二叉树节点包含一个值以及两个指针,分别指向其左子节点和右子节点。
  • 对于二叉树中的某个节点,其左(右)子节点及其以下形成的树被称为该节点的左(右)子树。
  • 二叉树的相关术语包括根节点、叶节点、层、度、边、高度和深度等。
  • 二叉树的初始化、节点插入和节点删除操作与链表操作方法类似。
  • 常见的二叉树类型有完美二叉树、完全二叉树、完满二叉树和平衡二叉树。完美二叉树是最理想的状态,而链表是退化后的最差状态。
  • 二叉树可以用数组表示,方法是将节点值和空位按层序遍历顺序排列,并根据父节点与子节点之间的索引映射关系来实现指针。
  • 二叉树的层序遍历是一种广度优先搜索方法,它体现了“一圈一圈向外扩展”的逐层遍历方式,通常通过队列来实现。
  • 前序、中序、后序遍历皆属于深度优先搜索,它们体现了“先走到尽头,再回溯继续”的遍历方式,通常使用递归来实现。
  • 二叉搜索树是一种高效的元素查找数据结构,其查找、插入和删除操作的时间复杂度均为 O(log⁡n) 。当二叉搜索树退化为链表时,各项时间复杂度会劣化至 O(⁡n)  。
  • AVL 树,也称平衡二叉搜索树,它通过旋转操作确保在不断插入和删除节点后树仍然保持平衡。
  • AVL 树的旋转操作包括右旋、左旋、先右旋再左旋、先左旋再右旋。在插入或删除节点后,AVL 树会从底向顶执行旋转操作,使树重新恢复平衡。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1361087.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大一,如何成为一名fpga工程师?

​ 1、数电&#xff08;必须掌握的基础&#xff09;&#xff0c;然后进阶学模电&#xff08;选学&#xff09;&#xff0c; 2、掌握HDL&#xff08;HDLverilogVHDL&#xff09;可以选择verilog或者VHDL&#xff0c;建议verilog就行。 3、掌握FPGA设计流程/原理&#xff08;推…

YOLOv5源码中的参数超详细解析(6)— common.py

前言:Hello大家好,我是小哥谈。YOLOv5是一种先进的目标检测算法,它可以实现快速和准确的目标检测。common.py文件是YOLOv5中的一个模块,它包含了一些常用的函数和类,用于定义网络结构中的各个模块。该文件中的函数和类被其他文件引用,用于构建整个YOLOv5模型。本节课就结…

「Verilog学习笔记」任意奇数倍时钟分频

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 timescale 1ns/1nsmodule clk_divider#(parameter dividor 5) ( input clk_in,input rst_n,output clk_out );parameter CNT_WIDTH $clog2(dividor - 1) ; reg flag1, f…

开发个小破软件——网址导航,解压就能用

网址导航 网站导航也称链接目录&#xff0c;将网站地址或系统地址分类&#xff0c;以列表、图文等形式呈现&#xff0c;帮助快速找到需要的地址。 应用场景 高效查找&#xff1a;网址导航是很好的入口&#xff0c;通过分类清晰的网站推荐&#xff0c;可以迅速访问网站资源。…

【网络层】网际控制报文协议ICMP(湖科大慕课自学笔记)

网际控制报文协议ICMP 1&#xff1a;网际控制报文协议ICMP基本概述 ICMP报文被封装在IP数据报中发送 1&#xff1a;ICMP报文格式 ICMP报文作为IP数据报的数据载荷&#xff0c;IP协议为其添加一个首部使之成为IP数据报 2&#xff1a;ICMP报文类型 ICMP报文分为两大类&#x…

C++string类的介绍及常用函数用法总结

&#x1f389;个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名乐于分享在学习道路上收获的大二在校生&#x1f43b;‍❄个人主页&#x1f389;&#xff1a;GOTXX &#x1f43c;个人WeChat&#xff1a;ILXOXVJE&#x1f43c;本文由GOTXX原创&#xff0c;首发CSDN&a…

java 打印日志的几种方式

java 打印日志的几种方式 Java 日志框架进化史日志门面与日志系统 Log4jslf4jLog4j2slf4jLogbackslf4j 一、先简单介绍五种 &#xff08;1&#xff09;最简单的方式&#xff0c;就是system.println.out(error) ,这样直接在控制台打印消息了&#xff1b; &#xff08;2&#xff…

web前端——clear可以清除浮动产生的影响

clear可以解决高度塌陷的问题&#xff0c;产生的副作用要小 未使用clear之前 <!DOCTYPE html> <head><meta charset"UTF-8"><title>高度塌陷相关学习</title><style>div{font-size:50px;}.box1{width:200px;height:200px;backg…

晶圆代工降价竞争进入白热化,降幅最高15% | 百能云芯

随着半导体产业的不确定性和市况回落&#xff0c;晶圆代工市场再次掀起波澜&#xff0c;“降价大军”再添猛将。 据综合媒体报道&#xff0c;传三星计划在2024年第一季度调降晶圆代工报价&#xff0c;提供5%至15%的折扣&#xff0c;并表示愿意进一步协商。 台积电根据客户的投产…

【Pytorch】学习记录分享10——TextCNN用于文本分类处理

【Pytorch】学习记录分享10——PyTorchTextCNN用于文本分类处理 1. TextCNN用于文本分类2. 代码实现 1. TextCNN用于文本分类 具体流程&#xff1a; 2. 代码实现 # coding: UTF-8 import torch import torch.nn as nn import torch.nn.functional as F import numpy as np…

79 Python开发-sqlmapapiTamperPocsuite

目录 本课知识点本课目的:演示案例:Sqlmap_Tamper模块脚本编写绕过滤SqlmapAPI调用实现自动化SQL注入安全检测Pocsuite3漏扫框架二次开发POC/EXP引入使用 涉及资源: 本课知识点 Request爬虫技术&#xff0c;Sqlmap深入分析&#xff0c;Pocsuite分析&#xff0c;框架代码二次修…

玩转Mysql 二(MySQL的目录结构与表结构)

一路走来,所有遇到的人,帮助过我的、伤害过我的都是朋友,没有一个是敌人。 一、MYSQL目录结构及命令存放路径 1、查看MYSQL数据文件存放路径 mysql> show variables like datadir; 注意:生成环境要提前规划好数据存放目录,存储一般以T为单位闪盘。 2、MYSQL命令存放…

RKE安装k8s及部署高可用rancher之证书私有证书但是内置的ssl不放到外置的LB中 4层负载均衡

先决条件# Kubernetes 集群 参考RKE安装k8s及部署高可用rancher之证书在外面的LB&#xff08;nginx中&#xff09;-CSDN博客CLI 工具Ingress Controller&#xff08;仅适用于托管 Kubernetes&#xff09; 创建集群k8s [rootnginx locale]# cat rancher-cluster.yml nodes:- …

【开源】基于JAVA语言的智能教学资源库系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 课程档案模块2.3 课程资源模块2.4 课程作业模块2.5 课程评价模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 课程档案表3.2.2 课程资源表3.2.3 课程作业表3.2.4 课程评价表 四、系统展示五、核心代…

vue2 element 弹出框拖拽会出现一层阴影问题

问题如图所示&#xff1a; 因增加 draggable 属性导致我弹窗表单清空文本框时&#xff0c;从右向左选中字体会出现拖拽阴影效果 去掉 draggable 即可 <template><div class"sys-jobTrigger-container"><el-dialog:visible.sync"state.isShowD…

抖店不好做?类目赛道没选对、选品能力跟不上,做不起来很正常!

我是王路飞。 抖店一直做不起来&#xff1f; 新手吐槽抖店不好做&#xff0c;绝大多数都有以下两个问题存在&#xff1a;类目赛道没选对、选品能力跟不上。 那你们做不起来也是很正常的一件事了。 今天围绕抖店的核心&#xff0c;给你们聊下&#xff0c;正确的运营抖店思路…

IP2312U_VSET 5V 2A 单节锂电池同步开关降压充电IC

IP2312U是一款5V输入&#xff0c;支持单节锂电池同步开关降压充电管理的IC。 IP2312U集成功率MOS&#xff0c;采用同步开关架构&#xff0c; 使其在应用时仅需极少的外围器件&#xff0c;并有效减小整体方案的尺寸&#xff0c;降低BOM 成本。 IP2312U的升压开关充电转换器工作频…

单片机大小端模式

单片机大小端模式 参考链接 单片机干货-什么是大小端_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Ju4y1M7Tx/?spm_id_from333.337.search-card.all.click&vd_sourcee821a225c7ba4a7b85e5aa6d013ac92e 特此记录 anlog 2024年1月2日

SpringMVC通用后台管理系统源码

整体的SSM后台管理框架功能已经初具雏形&#xff0c;前端界面风格采用了结构简单、 性能优良、页面美观大的Layui页面展示框架 数据库支持了SQLserver,只需修改配置文件即可实现数据库之间的转换。 系统工具中加入了定时任务管理和cron生成器&#xff0c;轻松实现系统调度问…

TMC4671闭环调试步进、伺服、音圈、永磁、无刷电机

一、IDE 连接开发板 下 面 讲 解 IDE 和 开 发 板 连 接 的 详 细 操 作 。 这 里 我 们 选 择 用 主 控 板 TMC671-EVALTMC6200-EVAL 开发板做讲解。其它型号的开发板也是大同小异 的操作步骤。 1&#xff0e;首先我连接好开发板&#xff0c;并给开发板上电 连接好的开发板如下…