k_d树, KNN算法学习笔记_1 距离和范数

news2024/11/26 14:29:01

k_d树, KNN算法学习笔记_1 距离和范数

二维树中最近邻搜索的示例。这里,树已经构建好了,每个节点对应一个矩形,每个矩形被分割成两个相等的子矩形,叶子对应于包含单个点的矩形

From Wikipedia


1. k k k近邻法是基本且简单的分类与回归方法。 k k k近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 k k k个最近邻训练实例点,然后利用这 k k k个训练实例点的类的多数来预测输入实例点的类。

2. k k k近邻模型对应于基于训练数据集对特征空间的一个划分。 k k k近邻法中,当训练集、距离度量、 k k k值及分类决策规则确定后,其结果唯一确定。

3. k k k近邻法三要素:距离度量、 k k k值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。 k k k值小时, k k k近邻模型更复杂; k k k值大时, k k k近邻模型更简单。 k k k值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的 k k k

常用的分类决策规则是多数表决,对应于经验风险最小化。

4. k k k近邻法的实现需要考虑如何快速搜索k个最近邻点。kd树是一种便于对k维空间中的数据进行快速检索的数据结构。kd树是二叉树,表示对 k k k维空间的一个划分,其每个结点对应于 k k k维空间划分中的一个超矩形区域。利用kd树可以省去对大部分数据点的搜索, 从而减少搜索的计算量。

1.距离度量

在机器学习算法中,我们经常需要计算样本之间的相似度,通常的做法是计算样本之间的距离。

x x x y y y为两个向量,求它们之间的距离。

这里用Numpy实现,设和为ndarray <numpy.ndarray>,它们的shape都是(N,)

d d d为所求的距离,是个浮点数(float)。

import numpy as np  #注意:运行代码时候需要导入NumPy库。
from numpy import linalg as npl
import matplotlib.pyplot as plt


numpy.linalg.norm 文档 Notes

对于ord < 1的值,结果严格来说不是数学上的“范数”,但它仍然可能对各种数值目的有用。

下面的这些范数可以计算:

ord矩阵范数向量范数说明
‘fro’Frobenius normFrobenius范数定义为矩阵所有元素的平方和的平方根
‘nuc’nuclear norm核范数是奇异值的和
infmax(sum(abs(x), axis=1))max(abs(x))绝对值的最大值
-infmin(sum(abs(x), axis=1))min(abs(x))绝对值的最小值
0sum(x != 0)非零元素的数量
1max(sum(abs(x), axis=0))as below向量的1范数是绝对值的和
-1min(sum(abs(x), axis=0))as below向量的-1范数是绝对值的最小值
22-norm (largest sing. value)as below向量的2范数是奇异值的最大值
-2smallest singular valueas below向量的-2范数是奇异值的最小值
othersum(abs(x)**ord)**(1./ord)其他值的范数, 即: Minkowski范数

The Frobenius norm is given by [1]:

∣ ∣ A ∣ ∣ F = [ ∑ i , j a b s ( a i , j ) 2 ] 1 / 2 ||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2} ∣∣AF=[i,jabs(ai,j)2]1/2

核范数是奇异值的和,即:

∣ ∣ A ∣ ∣ ∗ = ∑ i σ i ( A ) ||A||_* = \sum_i \sigma_i(A) ∣∣A=iσi(A)

Frobenius和核范数都只能定义为矩阵,并在x.ndim != 2时引发ValueError


常见范数[2]

向量范数
范数数学表达式描述“距离”类型
0 范数$ |\mathbf{x}|_{0} = #(i \mid x_i \not = 0)$非零向量元素个数之和x 到零点的汉明距离 Hamming Distance
1 范数 ∣ x ∣ 1 = ∑ i ∣ x i ∣ |\mathbf{x}|_{1} = \sum_i \mid x_i \mid x1=ixi向量元素绝对值之和x 到零点的曼哈顿距离 Manhattan Distance
2 范数 ∣ x ∣ 2 = ∑ i x i 2 |\mathbf{x}|_{2} = \sqrt{\sum_i x_i^{2}} x2=ixi2 向量元素绝对值的平方和再开方x 到零点的欧氏距离 Euclidean Distance
p 范数 ∣ x ∣ p = ∑ i x i p p |\mathbf{x}|_{p} = \sqrt[p]{\sum_i x_i^{p}} xp=pixip 向量元素绝对值的p次方和的1/p次幂x 到零点的p阶闵氏距离 Minkowski Distance
∞ \infty 范数 ∣ x ∣ ∞ = max ⁡ ∣ x i ∣ |\mathbf{x}|_{\infty} = \max{ \mid x_i \mid } x=maxxi所有向量元素绝对值中的最大值x 到零点的切比雪夫距离 Chebyshev Distance
− ∞ -\infty 范数 ∣ x ∣ − ∞ = min ⁡ ∣ x i ∣ |\mathbf{x}|_{-\infty} = \min{ \mid x_i \mid } x=minxi所有向量元素绝对值中的最小值-
矩阵范数
范数数学表达式描述
1 范数 ∣ A ∣ 1 = max ⁡ ∑ i ∣ x i , j ∣ |\mathbf{A}|_{1} = \max{ \sum_i \mid x_{i,j} \mid } A1=maxixi,j列和范数,即所有矩阵列向量绝对值之和的最大值
2 范数 ∣ A ∣ 2 = λ |\mathbf{A}|_{2} = \sqrt{\lambda} A2=λ 谱范数,即 A T A A^TA ATA矩阵的最大特征值的开平方
F 范数 ∣ A ∣ F = ∑ i ∑ j x i , j 2 |\mathbf{A}|_{F} = \sqrt{ \sum_i \sum_j x_{i,j}^{2} } AF=ijxi,j2 Frobenius 范数,即矩阵元素绝对值的平方和再开平方
∞ \infty 范数 ∣ A ∣ ∞ = max ⁡ ∑ j ∣ x i , j ∣ |\mathbf{A}|_{\infty} = \max{ \sum_j \mid x_{i,j} \mid } A=maxjxi,j行和范数,即所有矩阵行向量绝对值之和的最大值
− ∞ -\infty 范数 ∣ A ∣ − ∞ = min ⁡ ∣ x i , j ∣ |\mathbf{A}|_{-\infty} = \min{ \mid x_{i,j} \mid } A=minxi,j所有矩阵元素绝对值中的最小值
核范数 ∣ A ∣ ∗ = ∑ i σ i |\mathbf{A}|_{*} = \sum_i \sigma_i A=iσi矩阵奇异值之和

欧氏距离(Euclidean distance)

欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在 m m m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

距离公式:

d ( x , y ) = ∑ i ( x i − y i ) 2 d\left( x,y \right) = \sqrt{\sum_{i}^{}(x_{i} - y_{i})^{2}} d(x,y)=i(xiyi)2

在这里插入图片描述

代码实现:

def euclidean(x, y):

    return np.sqrt(np.sum((x - y)**2))
ndA = np.asanyarray
p1 = ndA((4, 5))
p2 = ndA((12,16))

euDst_ = lambda p1, p2: np.sqrt(np.sum((p1 - p2)**2))
def euDst(p1, p2):
    return npl.norm(p1 - p2)

曼哈顿距离(Manhattan distance)

想象你在城市道路里,要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。

距离公式:

d ( x , y ) = ∑ i ∣ x i − y i ∣ d(x,y) = \sum_{i}^{}|x_{i} - y_{i}| d(x,y)=ixiyi

在这里插入图片描述

代码实现:

def manhattan(x, y):

    return np.sum(np.abs(x - y))
manDst_ = lambda p1, p2: np.sum(np.abs(p1 - p2))
def manDst(p1, p2):
    return npl.norm(p1 - p2, ord=1)

切比雪夫距离(Chebyshev distance)

在数学中,切比雪夫距离(Chebyshev distance)或是L∞度量,是向量空间中的一种度量,二个点之间的距离定义是其各坐标数值差绝对值的最大值。以数学的观点来看,切比雪夫距离是由一致范数(uniform norm)(或称为上确界范数)所衍生的度量,也是超凸度量(injective metric space)的一种。

距离公式:

d ( x , y ) = max ⁡ i ∣ x i − y i ∣ d\left( x,y \right) = \max_{i}\left| x_{i} - y_{i} \right| d(x,y)=imaxxiyi

在这里插入图片描述

若将国际象棋棋盘放在二维直角座标系中,格子的边长定义为1,座标的 x x x轴及 y y y轴和棋盘方格平行,原点恰落在某一格的中心点,则王从一个位置走到其他位置需要的步数恰为二个位置的切比雪夫距离,因此切比雪夫距离也称为棋盘距离。例如位置F6和位置E2的切比雪夫距离为4。任何一个不在棋盘边缘的位置,和周围八个位置的切比雪夫距离都是1。

代码实现:

def chebyshev(x, y):

    return np.max(np.abs(x - y))
cheDst_ = lambda p1, p2: np.max(np.abs(p1 - p2))
def cheDst(p1, p2):
    # return np.max(np.abs(p1 - p2))
    return np.linalg.norm(p1 - p2, ord=np.inf)

闵可夫斯基距离(Minkowski distance)

闵氏空间指狭义相对论中由一个时间维和三个空间维组成的时空,为俄裔德国数学家闵可夫斯基(H.Minkowski,1864-1909)最先表述。他的平坦空间(即假设没有重力,曲率为零的空间)的概念以及表示为特殊距离量的几何学是与狭义相对论的要求相一致的。闵可夫斯基空间不同于牛顿力学的平坦空间。 p p p取1或2时的闵氏距离是最为常用的, p = 2 p= 2 p=2即为欧氏距离,而 p = 1 p =1 p=1时则为曼哈顿距离。

p p p取无穷时的极限情况下,可以得到切比雪夫距离。

距离公式:

d ( x , y ) = ( ∑ i ∣ x i − y i ∣ p ) 1 p d\left( x,y \right) = \left( \sum_{i}^{}|x_{i} - y_{i}|^{p} \right)^{\frac{1}{p}} d(x,y)=(ixiyip)p1

代码实现:

def minkowski(x, y, ):

    return np.sum(np.abs(x - y)**p)**(1 / p)
mkDst_ = lambda p1, p2, p: np.sum(np.abs(p1 - p2)**p)**(1 / p)
def mkDst(p1, p2, p):
  # if   p == 1: # 曼哈顿距离
  #   return npl.norm(p1 - p2, ord=1)
  # elif p == 2: # 欧式距离
  #   return npl.norm(p1 - p2)
  # elif p == np.inf: # 切比雪夫距离
  #   return npl.norm(p1 - p2, ord=np.inf)
  # else: # 闵可夫斯基距离
  return npl.norm(p1 - p2, ord = p) # ?

# ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional

汉明距离(Hamming distance)

汉明距离是使用在数据传输差错控制编码里面的,汉明距离是一个概念,它表示两个(相同长度)字对应位不同的数量,我们以表示两个字,之间的汉明距离。对两个字符串进行异或运算,并统计结果为1的个数,那么这个数就是汉明距离。

距离公式:

d ( x , y ) = 1 N ∑ i 1 x i ≠ y i d\left( x,y \right) = \frac{1}{N}\sum_{i}^{}1_{x_{i} \neq y_{i}} d(x,y)=N1i1xi=yi
在这里插入图片描述

代码实现:

def hamming(x, y):

    return np.sum(x != y) / len(x)
hmDst_ = lambda p1, p2: np.sum(p1 != p2) / len(p1)
def hmDst(p1, p2):
    return npl.norm(p1 - p2, ord=0) / len(p1)

余弦相似度(Cosine Similarity)

余弦相似性通过测量两个向量的夹角的余弦值来度量它们之间的相似性。0度角的余弦值是1,而其他任何角度的余弦值都不大于1;并且其最小值是-1。从而两个向量之间的角度的余弦值确定两个向量是否大致指向相同的方向。两个向量有相同的指向时,余弦相似度的值为1;两个向量夹角为90°时,余弦相似度的值为0;两个向量指向完全相反的方向时,余弦相似度的值为-1。这结果是与向量的长度无关的,仅仅与向量的指向方向相关。余弦相似度通常用于正空间,因此给出的值为0到1之间。

在这里插入图片描述

二维空间为例,上图的 a a a b b b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

cos ⁡ θ = a 2 + b 2 − c 2 2 a b \cos\theta = \frac{a^{2} + b^{2} - c^{2}}{2ab} cosθ=2aba2+b2c2

假定 a a a向量是 [ x 1 , y 1 ] \left\lbrack x_{1},y_{1} \right\rbrack [x1,y1] b b b向量是 [ x 2 , y 2 ] \left\lbrack x_{2},y_{2} \right\rbrack [x2,y2],两个向量间的余弦值可以通过使用欧几里得点积公式求出:

cos ⁡ ( θ ) = A ⋅ B ∥ A ∥ ∥ B ∥ = ∑ i = 1 n A i × B i ∑ i = 1 n ( A i ) 2 × ∑ i = 1 n ( B i ) 2 \cos\left( \theta \right) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} = \frac{\sum_{i = 1}^{n}A_{i} \times B_{i}}{\sqrt{\sum_{i = 1}^{n}(A_{i})^{2} \times \sqrt{\sum_{i = 1}^{n}(B_{i})^{2}}}} cos(θ)=A∥∥BAB=i=1n(Ai)2×i=1n(Bi)2 i=1nAi×Bi

cos ⁡ ( θ ) = A ⋅ B ∥ A ∥ ∥ B ∥ = ( x 1 , y 1 ) ⋅ ( x 2 , y 2 ) x 1 2 + y 1 2 × x 2 2 + y 2 2 = x 1 x 2 + y 1 y 2 x 1 2 + y 1 2 × x 2 2 + y 2 2 \cos\left( \theta \right) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} = \frac{\left( x_{1},y_{1} \right) \cdot \left( x_{2},y_{2} \right)}{\sqrt{x_{1}^{2} + y_{1}^{2}} \times \sqrt{x_{2}^{2} + y_{2}^{2}}} = \frac{x_{1}x_{2} + y_{1}y_{2}}{\sqrt{x_{1}^{2} + y_{1}^{2}} \times \sqrt{x_{2}^{2} + y_{2}^{2}}} cos(θ)=A∥∥BAB=x12+y12 ×x22+y22 (x1,y1)(x2,y2)=x12+y12 ×x22+y22 x1x2+y1y2

如果向量 a a a b b b不是二维而是 n n n维,上述余弦的计算法仍然正确。假定 A A A B B B是两个 n n n维向量, A A A [ A 1 , A 2 , … , A n ] \left\lbrack A_{1},A_{2},\ldots,A_{n} \right\rbrack [A1,A2,,An] B B B [ B 1 , B 2 , … , B n ] \left\lbrack B_{1},B_{2},\ldots,B_{n} \right\rbrack [B1,B2,,Bn],则 A A A B B B的夹角余弦等于:

cos ⁡ ( θ ) = A ⋅ B ∥ A ∥ ∥ B ∥ = ∑ i = 1 n A i × B i ∑ i = 1 n ( A i ) 2 × ∑ i = 1 n ( B i ) 2 \cos\left( \theta \right) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} = \frac{\sum_{i = 1}^{n}A_{i} \times B_{i}}{\sqrt{\sum_{i = 1}^{n}(A_{i})^{2}} \times \sqrt{\sum_{i = 1}^{n}(B_{i})^{2}}} cos(θ)=A∥∥BAB=i=1n(Ai)2 ×i=1n(Bi)2 i=1nAi×Bi

在这里插入图片描述

代码实现:

from math import *

def square_rooted(x):

    return round(sqrt(sum([a*a for a in x])),3)
def cosine_similarity(x, y):

    numerator = sum(a * b for a, b in zip(x, y))
    denominator = square_rooted(x) * square_rooted(y)
    return round(numerator / float(denominator), 3)
print(cosine_similarity([3, 45, 7, 2], [2, 54, 13, 15]))
cosSm_ = lambda p1, p2:\
            np.sum(p1 * p2)\
          / (np.sqrt(np.sum(p1**2))\
          * np.sqrt(np.sum(p2**2)))
def cosSm(p1, p2):
    return  npl.norm(p1 - p2, ord=2)\
          / (npl.norm(p1, ord=2) * npl.norm(p2, ord=2))

参考

  1. 黄海广老师的机器学习教程
  2. 【Numpy】常见范数的数学定义与 Numpy 实现
  • 注意⚠️: 本文由vscode的’copilot AI`协助完成, 谨慎使用
    在这里插入图片描述

未完待续…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1357532.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用通用MCU实现无人机飞行任务的快速二次开发

使用通用MCU实现无人机飞行任务的快速二次开发 ---TIDronePilot外部控制offboard模式介绍 无名小哥 2024年1月1日 传统飞控二次开发方法和主要存在的问题简介 通过对前面几讲中《零基础竞赛无人机积木式编程指南》系列开发教程的学习可知&#xff0c;在以往TI电赛真题的学习…

简单多状态dp问题(打家劫舍Ⅱ)

通过分类谈论&#xff0c;将环形的问题&#xff0c;转化成两个线性的 “ 打家劫舍Ⅰ ” 1.状态表示 2.状态转移方程 3.初始化 f[ 0 ] nums[ 0 ] g[ 0 ] 0 4.填表顺序 从左往右填表&#xff0c;两个表一块填 5.返回值 max( f[ n-1 ] , g [ n - 1 ] )

VM安装虚拟机及初始化操作

一、VM下载及暗转 虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统&#xff0c;在实体计算机中能够完成的工作在虚拟机中都能够实现。VMware 是一款功能强大的桌面虚拟计算机软件&#xff0c;提供用户可在单一的桌面上同时运行不同的…

YOLOv8改进 | 2023Neck篇 | 利用Gold-YOLO改进YOLOv8对小目标检测

一、本文介绍 本文给大家带来的改进机制是Gold-YOLO利用其Neck改进v8的Neck,GoLd-YOLO引入了一种新的机制——信息聚集-分发(Gather-and-Distribute, GD)。这个机制通过全局融合不同层次的特征并将融合后的全局信息注入到各个层级中,从而实现更高效的信息交互和融合。这种…

轻量化网络-MobileNet系列

整理备忘 目录 1. MobileNetV1 1.1 论文 1.2 网络结构 1.3 深度可分离卷积 1.4 计算量下降了 1.5 参数量下降了 2. MobileNetV2 2.1 论文 2.2 网络结构 2.3 效果 3. MobileNetV3 3.1 论文 3.2 网络结构 3.3 效果 1. MobileNetV1 1.1 论文 https://arxiv.org/a…

晨控CK-GW08-EC与欧姆龙PLC工业EtherCAT协议通讯指南

晨控CK-GW08-EC与欧姆龙PLC工业EtherCAT协议通讯指南 晨控CK-GW08系列是一款支持标准工业通讯协议EtherCAT的网关控制器,方便用户集成到PLC等控制系统中。系统还集成了8路读写接口&#xff0c;用户可通过通信接口使用EtherCAT协议对8路读写接口所连接的读卡器进行相对独立的读…

ocrmypdf_pdf识别

安装 安装说明 https://ocrmypdf.readthedocs.io/en/latest/installation.html#native-windows提到需要的软件&#xff1a; Python 3.7 (64-bit) or later Tesseract 4.0 or later Ghostscript 9.50 or later 安装 ocrmypdf pip install ocrmypdf 添加语言包 https://oc…

sqlserver工具插入表语法into新表问题

文章目录 sqlserver工具插入表语法into新表问题 sqlserver工具插入表语法into新表问题 into新表问题 SELECT 1 AS FID, AS FNUMBER,1 AS FVALUE,A AS FVALUE2,名字 AS FNAME, 你的全名 FFULLNAME INTO t_user_mmINSERT INTO t_user_mm VALUES(2,2,2,B,懒人,懒人咖)INSERT I…

Apache Paimon:Streaming Lakehouse is Coming

摘要&#xff1a;本文整理自阿里云智能开源表存储负责人&#xff0c;Founder of Paimon&#xff0c;Flink PMC 成员李劲松&#xff08;花名&#xff1a;之信&#xff09;、同程旅行大数据专家&#xff0c;Apache Hudi & Paimon Contributor 吴祥平、汽车之家大数据计算平台…

探秘Spring Bean的秘境:作用域篇【beans 三】

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 探秘Spring Bean的秘境&#xff1a;作用域篇【beans 三】 前言单例作用域如何声明单例Bean&#xff1a;特点&#xff1a; 原型作用域如何声明原型Bean&#xff1a;特点&#xff1a; 会话作用域如何声明…

基于粒子群算法的参数拟合,寻优算法优化测试函数

目录 摘要 测试函数shubert 粒子群算法的原理 粒子群算法的主要参数 粒子群算法原理 粒子群算法参数拟合 代码 结果分析 展望 基于粒子群算法的参数拟合(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/88698417 摘要 寻优算法,测试…

Node.js+Express+Mysql实现分页查询

根据记录数总数和分页数获到页总数 function pageCount (totalnum,limit){return totalnum > 0 ? ((totalnum < limit) ? 1 : ((totalnum % limit) ? (parseInt(totalnum / limit) 1) : (totalnum / limit))) : 0; } 接收请求代码 router.get(/api/user/page, asy…

iOS UITextField复制、粘贴框显示为英文如何解决

问题描述&#xff1a; 使用UITextField&#xff0c;欲粘贴文本&#xff0c;长按或者双击展示的提示框显示为英文 解决方案&#xff1a; 在Xcode配置文件info,plist文件中&#xff0c;新增Localizas属性&#xff0c;填入Chinese 结果如下&#xff1a; 提示框成功展示为中文

PostgreSQL 分区

由于大量数据存储在数据库同一张表中&#xff0c;后期性能和扩展会受到影响。所以需要进行表分区&#xff0c;因为它可以将大表分成较小的表&#xff0c;从而减少内存交换问题和表扫描&#xff0c;最终提高性能。庞大的数据集被分成更小的分区&#xff0c;更易于访问和管理。 …

系列十一、(一)Sentinel简介

一、Sentinel简介 1.1、官网 【英文文档】 https://github.com/alibaba/Sentinel/wiki【中文文档】 https://github.com/alibaba/Sentinel/wiki/%E4%B8%BB%E9%A1%B5 1.2、概述 1.3、功能

Matlab/F#/R进行数据分析和建模算法的经验,vb.net输给他了

微软放弃了vb.net的开发&#xff0c;但是持续花费巨资投入F#,简单一看他的语法就是qbasic ,vb6一样。鹿死谁手&#xff0c;谁能相信vb.net竟然被f#给干掉了。外面有vb6语法的python成了全球第一的编程语言,内部还有强大的教授开发的这工具扯后腿。 有人说为什么中国搞不出像mat…

【数据结构】链表简介及单链表的实现

简单不先于复杂&#xff0c;而是在复杂之后。 文章目录 1. 链表1.1 链表的概念及结构1.2 链表的分类1.3 无头单向非循环链表的实现 1. 链表 1.1 链表的概念及结构 概念&#xff1a;链表是一种物理存储结构上非连续&#xff0c;非顺序的存储结构&#xff0c;数据元素的逻辑顺序…

Jvm垃圾收集器系列之Parallel Scavenge收集器(个人见解仅供参考)

问&#xff1a;什么是Parallel Scavenge&#xff1f; 答&#xff1a;Parallel Scavenge是Java HotSpot虚拟机中的一种垃圾收集器&#xff0c;它主要用于提高应用程序的吞吐量。 问&#xff1a;Parallel Scavenge的主要目标是什么&#xff1f; 答&#xff1a;Parallel Scavenge的…

Hive - Select 使用 in 限制范围

目录 一.引言 二.Select Uid Info 1.少量 Uid 2.大量 Uid ◆ 建表 ◆ 本地 Load ◆ HDFS Load ◆ Select In 三.总结 一.引言 工业场景下 Hive 表通常使用 uid 作为用户维度构建和更新 Hive 表&#xff0c;当我们需要查询指定批次用户信息时&#xff0c;可以使用 in …

自制Java镜像发布到dockerhub公网使用

文章目录 问题现象解决制作Java镜像发布使用 问题现象 书接上回&#xff0c;上周处理了一个docker问题&#xff0c;写了篇博客&#xff1a;自定义docker镜像&#xff0c;ubuntu安装命令并导出我们使用谷歌的jib插件打包&#xff0c;详情可以参考这篇文章&#xff1a;Spring Bo…