文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于碳捕集与封存-电转气-电解熔融盐协同的虚拟电厂优化调度》

news2024/11/27 2:46:01

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主的专栏栏目《论文与完整程序》

这个标题涉及到多个关键概念,让我们逐一解读:

  1. 碳捕集与封存(Carbon Capture and Storage,CCS): 这是一种技术,旨在减少工业过程和能源生产中产生的二氧化碳排放。它包括捕获工业排放的二氧化碳并将其封存在地下储存设施中,以防止其释放到大气中,从而减少对气候的负面影响。

  2. 电转气(Power-to-Gas,PtG): 这是一种技术,通过使用过剩的电力(通常来自可再生能源)来生产氢气或其他可燃气体。这种气体可以被储存或用于后续能源转换过程。

  3. 电解熔融盐(Electrolysis with Molten Salt,EMS): 这是电解水的一种特殊形式,其中电解反应发生在熔融盐中。这种方法通常用于生产氢气,是PtG技术的一部分。

  4. 虚拟电厂(Virtual Power Plant,VPP): 这是通过将多个分布式能源资源(如太阳能、风能、储能系统等)整合到一个虚拟网络中来管理和优化能源的概念。VPP旨在提高能源系统的效率和灵活性。

  5. 优化调度: 这指的是对虚拟电厂中各种组件(包括碳捕集与封存、电转气和电解熔融盐系统)的运行进行优化,以实现特定的目标,例如最小化成本、最大化可再生能源利用或最小化碳排放。

因此,整个标题表明研究的焦点是如何在虚拟电厂中协同管理碳捕集与封存、电转气和电解熔融盐系统,以实现更有效的能源生产和排放减少。这可能涉及到复杂的数学模型、算法和优化技术,以最大化系统性能并在能源转型中发挥关键作用。

摘要:为了应对气候变化,推动能源电力碳达峰、碳中和进程,提出一种以电解熔融盐(electrolyticmoltencarbonate,EMC)技术为基础的EMC碳捕集电厂,并且考虑了碳捕集与封存(carbon capture and storage,CCS)技术以及两段式电转气(power to gas,P2G),建立了基于CCS-P2G-EMC协同的虚拟电厂(virtual power plant,VPP)优化调度模型。首先,根据EMC技术的原理,考虑与燃气轮机热电联产(combined heatandpower,CHP)机组耦合,建立了EMC碳捕集电厂数学模型,并分析了EMC碳捕集电厂热电出力的灵活性。其次,构建了CCS-P2G-EMC协同框架,并对其低碳特性机理进行分析,并在此基础上建立低碳经济调度模型,实现了VPP的低碳经济运行。最后,通过设置不同场景进行对比,验证了所提调度模型的有效性,可在保证VPP经济效益的同时降低系统碳排放。

这段摘要主要描述了一个研究项目或论文的主要内容和目标。下面是对这段摘要的逐步解读:

  1. 目的与背景:

    • 为了应对气候变化并推进能源电力的碳达峰和碳中和,作者提出了一种新的方法和技术。
  2. 技术基础:

    • 提出了基于电解熔融碳酸盐(EMC)技术的碳捕集电厂。这种技术是通过使用熔融碳酸盐进行电解来捕获和处理二氧化碳。
    • 除了EMC技术外,该方案还考虑了碳捕集与封存(CCS)技术和两段式电转气(P2G)。
  3. 虚拟电厂建模:

    • 基于CCS、P2G和EMC的协同作用,作者建立了一个虚拟电厂(VPP)优化调度模型。虚拟电厂是一个集成多种能源资源的系统,用于有效管理和优化能源供应。
  4. 技术细节与模型构建:

    • 作者详细描述了如何将EMC技术与燃气轮机热电联产(CHP)机组相结合,并建立了相应的数学模型。
    • 分析了EMC碳捕集电厂在热电产出方面的灵活性,这可能涉及到对电力和热能输出进行动态调整以适应需求变化。
  5. 低碳经济运行:

    • 在建立了CCS-P2G-EMC协同框架的基础上,作者分析了其低碳特性,并创建了一个低碳经济调度模型,以实现虚拟电厂的低碳运营。
  6. 验证与效果:

    • 通过设置不同的场景进行对比,作者验证了所提出的优化调度模型的有效性。这意味着该模型不仅可以提高虚拟电厂的经济效益,还可以减少系统的碳排放。

总之,这段摘要描述了一个以EMC技术为核心的碳捕集电厂,该电厂与CCS和P2G技术相结合,并通过建立一个优化的虚拟电厂模型来实现低碳、经济有效的能源运营。

关键词: 电解熔融盐;两段式电转气;碳捕集与封存;虚拟电厂;低碳经济调度;

当谈到这些关键词时:

  1. 电解熔融盐 (Electrolytic Molten Salt):

    • 这是一种技术,利用电解过程在熔融的盐(通常是碳酸盐等)中进行。这种方法可用于多种用途,包括但不限于电解产氢、碳捕集等。在碳捕集方面,它可能指的是使用熔融盐作为介质来捕获二氧化碳。
  2. 两段式电转气 (Power to Gas, P2G):

    • P2G 是一种能源转化技术,将电能转换为气体能源,通常是通过电解水制氢或通过电化学过程产生合成天然气(通常是甲烷)。这项技术有助于将可再生能源(如风能或太阳能)转化为便于储存和运输的气体能源。
  3. 碳捕集与封存 (Carbon Capture and Storage, CCS):

    • CCS 是一种减少二氧化碳排放的技术,其中二氧化碳被捕获并存储在地下,避免其释放到大气中。通常包括捕获二氧化碳、运输至存储地点和封存于地下地层。
  4. 虚拟电厂 (Virtual Power Plant, VPP):

    • VPP 是一种集成多种分布式能源资源的智能化系统,包括可再生能源、储能系统和灵活负荷等。它可以集中管理和优化这些资源,以提供可靠的电力供应。
  5. 低碳经济调度 (Low Carbon Economic Dispatch):

    • 这指的是在能源系统中优化能源分配和使用,以最小化碳排放同时保持经济性。这种调度方法可以结合不同的能源资源,以最大程度地减少对高碳能源的依赖,从而降低整体碳排放。

这些关键词一起描述了一种综合利用电解技术、能源转化、碳捕集与封存、以及优化能源调度的方法,旨在实现可持续、低碳、经济高效的能源供应和管理。

仿真算例:

本文的 VPP 包含 1 个风电厂,3 个 CCS 碳捕 集电厂,1 个 EMC 碳捕集电厂,1 台两段式 P2G 设备,1 台氢能燃料电池,1 台电加热锅炉以及储 电、储热和储氢设备。CCS 设备相关参数见参考文 献[25],其他各设备参数见附录 D 表 D1—D4,热 负荷以及风电的预测值见附录 C 图 C1。本文算例 采用 CPLEX 进行优化求解。 为验证本文所提 CCS-P2G-EMC 耦合框架的有 效性,设置以下 4 种场景,并对不同场景下的调度 结果进行对比分析: 场景 1:考虑 CCS-P2G-GT 耦合框架,P2G 为 传统 P2G。 场 景 2 : 考 虑 由 两 段 式 P2G 形 成 的 CCS-P2G-GT 耦合框架,P2G 为两段式 P2G。 场景 3:本文提出的 CCS-P2G-EMC 耦合框架, 但 P2G 为传统 P2G。 场景 4:本文提出的 CCS-P2G-EMC 耦合框架, P2G 为两段式 P2G。 算例以典型风电和电热负荷预测数据为基础, 各个场景以 VPP 系统成本最低为目标函数进行优 化,对比分析各个场景的调度结果,以验证本文方 法的优势。

仿真程序复现思路:

import numpy as np
import matplotlib.pyplot as plt

# 定义仿真参数
simulation_duration = 100  # 仿真时间步长
time_steps = np.arange(0, simulation_duration, 1)  # 时间步长数组

# 定义系统参数
initial_energy = 50  # 初始能量
energy_capacity = 100  # 能量容量

# 定义控制器参数
controller_gain = 0.1  # 控制器增益

# 初始化变量
energy_level = np.zeros(simulation_duration)
energy_level[0] = initial_energy

# 开始仿真循环
for step in range(1, simulation_duration):
    # 计算控制器输出
    control_output = controller_gain * (energy_capacity - energy_level[step - 1])

    # 模拟系统响应,这里简单地使用一个增量模型
    energy_increment = control_output
    energy_level[step] = energy_level[step - 1] + energy_increment

# 绘制仿真结果
plt.plot(time_steps, energy_level, label='Energy Level')
plt.axhline(y=energy_capacity, color='r', linestyle='--', label='Energy Capacity')
plt.xlabel('Time Steps')
plt.ylabel('Energy Level')
plt.legend()
plt.show()

在这个示例中,我们模拟了一个简单的能量系统,其中有一个能量存储设备和一个简单的控制器。控制器的目标是将能量存储设备的能量水平保持在容量的一定百分比之下。你可以根据自己的仿真需求,调整系统模型和控制器的参数。

请注意,实际仿真程序可能涉及更复杂的系统动力学和控制策略,具体实现会根据具体问题的复杂性而有所不同。在实际应用中,你可能需要使用专业的仿真工具和库,如Simulink、AnyLogic等,以更好地支持系统建模和仿真。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1354340.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】常用的基本命令指令①

前言:从今天开始,我们逐步的学习Linux中的内容,和一些网络的基本概念,各位一起努力呐! 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 专栏分类:数据结构 👈 💯代码…

如何解决大模型的「幻觉」问题?

如何解决大模型的「幻觉」问题? 如何解决大模型的「幻觉」问题?幻觉产生原因?模型原因数据层面 幻觉怎么评估?Reference-based(基于参考信息)基于模型的输入、预先定义的目标输出基于模型的输入 Reference-…

基于ssm的资产管理信息系统+vue论文

摘要 当下,正处于信息化的时代,许多行业顺应时代的变化,结合使用计算机技术向数字化、信息化建设迈进。以前企业对于资产信息的管理和控制,采用人工登记的方式保存相关数据,这种以人力为主的管理模式已然落后。本人结…

《Linux C编程实战》笔记:实现自己的myshell

ok,考完试成功复活 这次是自己的shell命令程序的示例 流程图: 关键函数 1.void print_prompt() 函数说明:这个函数打印myshell提示符,即“myshell$$”. 2.void get_input(char *buf) 函数说明:获得一条指令&#…

13|代理(下):结构化工具对话、Self-Ask with Search以及Plan and execute代理

13|代理(下):结构化工具对话、Self-Ask with Search以及Plan and execute代理 什么是结构化工具 LangChain 的第一个版本是在 2022 年 11 月推出的,当时的设计是基于 ReAct 论文构建的,主要围绕着代理和工…

2024美赛数学建模常用数学建模模型之——层次分析法

一、层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是 一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次 分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 …

GPU的硬件架构

SM: streaming Multiprocessor 流多处理器 sm里面有多个(sp)cuda core 32个线程称为一个warp,一个warp是一个基本执行单元 抽象概念:grid 网格 block 块 thread 线程 块中的线程大小是有讲究的,关乎到资源的调度,一般是128&#x…

macbook电脑2024免费好用的系统清理优化软件CleanMyMac X4.14.7

CleanMyMac X2024来帮助你找到和删除不需要的文件。CleanMyMac X是一款专业的mac清理软件,它可以智能地扫描你的磁盘空间,找出并删除大型和旧文件,系统垃圾,iTunes垃圾,邮件附件,照片库垃圾等,让…

【Vue2+3入门到实战】(22)VUE3之组合式API - setup、reactive和ref函数、computed、watch、生命周期函数详细讲解

目录 一、组合式API - setup选项1. setup选项的写法和执行时机2. setup中写代码的特点3. <script setup>语法糖 二、组合式API - reactive和ref函数1. reactive2. ref3. reactive 对比 ref 三、组合式API - computed四、组合式API - watch1. 侦听单个数据2. 侦听多个数据…

Java学习,一文掌握Java之SpringBoot框架学习文集(3)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

electron进程通信之预加载脚本和渲染进程对主进程通信

主进程和预加载脚本通信 主进程 mian,js 和预加载脚本preload.js,在主进程中创建预加载脚本, const createWindow () > {// Create the browser window.const mainWindow new BrowserWindow({width: 300,height: 300,// 指定预加载脚本webPreferences: {preload: path.j…

数据结构【查找篇】

数据结构【查找篇】 文章目录 数据结构【查找篇】前言为什么突然想学算法了&#xff1f;为什么选择码蹄集作为刷题软件&#xff1f; 目录一、顺序查找二、折半查找三、 二叉排序树的查找四、红黑树 结语 前言 为什么突然想学算法了&#xff1f; > 用较为“官方”的语言讲&am…

22 闪烁按钮

效果演示 实现了一个按钮的样式&#xff0c;包括背景颜色、边框、圆角、点击效果等。当鼠标悬停在按钮上时&#xff0c;按钮的背景颜色和文字颜色会发生变化&#xff0c;同时按钮会出现闪烁的效果。 Code <button class"btn"><svg height"24" wi…

UDP通信(服务器-客户端)

一、 UDP服务器-客户端通信 UDP&#xff08;User Datagram Protocol&#xff09;是一种面向无连接的传输层协议&#xff0c;它提供了一种简单的、不可靠的数据传输服务。与TCP&#xff08;Transmission Control Protocol&#xff09;不同&#xff0c;UDP不建立连接&#xff0c;…

奈奎斯特定理

奈奎斯特定理是通信领域中重要的理论基础之一&#xff0c;它对于数字通信系统中的信号采样和重构具有至关重要的作用。在数字信号处理和通信技术中&#xff0c;奈奎斯特定理的应用不仅具有理论意义&#xff0c;还对通信系统的设计、优化和性能提升起着重要的指导作用。本文将以…

MySQL8.0主从复制实现及遇到的个人问题

文章目录 1、准备两个服务器或者虚拟机2、主库配置3、从库配置4、配置过程中使用到的命令5、遇到的问题 1、准备两个服务器或者虚拟机 这里使用的VM虚拟机的Centos、MySQL版本是8.0.26、使用FinalShell进行远程操作。 2、主库配置 修改MySQL配置文件(/etc/my.cnf) #启用二进…

leetcode:1464. 数组中两元素的最大乘积(python3解法)

难度&#xff1a;简单 给你一个整数数组 nums&#xff0c;请你选择数组的两个不同下标 i 和 j&#xff0c;使 (nums[i]-1)*(nums[j]-1) 取得最大值。 请你计算并返回该式的最大值。 示例 1&#xff1a; 输入&#xff1a;nums [3,4,5,2] 输出&#xff1a;12 解释&#xff1a;如…

麒麟Kylin服务器版-破解root密码

一、单用户模式修改root密码 1.重启服务器系统后&#xff0c;将光标移动到第二项&#xff0c;按【e】键进入用户登录页面。 2.在【username】下方所在行输入root名称&#xff0c;【password】下方所在行输入密码Kylin123123后&#xff0c;进入编辑模式。代码如下&#xff1a; …

芯课堂 | MCU之TIMER精准延时

引言 华芯微特公司SWM系列单片机提供的TIMER个数和功能有些微差别&#xff0c;为了让您更加简单的使用这一功能&#xff0c;下面小编将以SWM190为例&#xff0c;给大家展示如何使用SWM系列产品的TIMER功能。 TIMER精准延时 一、TIMER简介 TIMER是一种定时器工具&#xff0c;…

C# 全屏label控件实现的贪吃蛇。

C# 全屏label控件实现的贪吃蛇。 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms; using stat…