【ROS2】MOMO的鱼香ROS2(五)ROS2入门篇——ROS2接口与自定义

news2024/11/17 11:50:41

ROS2接口与自定义

  • 引言
  • 1 ROS2自带接口
    • 1.1 ROS2通用标准消息包
    • 1.2 ROS2传感器消息包
    • 1.3 ROS2几何相关消息包
  • 2 ROS2接口介绍
    • 2.1 常用CLI命令
    • 2.2 原始数据类型与包装类型
  • 3 自定义接口示例
    • 3.1 接口定义
    • 3.2 自定义接口RCLPY

引言

笔者跟着鱼香ROS的ROS2学习之旅
学习参考:
【ROS2机器人入门到实战】
笔者的学习目录

  1. MOMO的鱼香ROS2(一)ROS2入门篇——从Ubuntu操作系统开启
  2. MOMO的鱼香ROS2(二)ROS2入门篇——ROS2初体验
  3. MOMO的鱼香ROS2(三)ROS2入门篇——ROS2第一个节点
  4. MOMO的鱼香ROS2(四)ROS2入门篇——ROS2节点通信之话题与服务

1 ROS2自带接口

接口其实是一种规范

1.1 ROS2通用标准消息包

ros2 interface package std_msgs
std_msgs/msg/String
std_msgs/msg/ByteMultiArray
std_msgs/msg/UInt16
std_msgs/msg/UInt64
std_msgs/msg/UInt8
std_msgs/msg/Int64MultiArray
std_msgs/msg/UInt32MultiArray
std_msgs/msg/UInt16MultiArray
std_msgs/msg/Float32MultiArray
std_msgs/msg/MultiArrayDimension
std_msgs/msg/Float64MultiArray
std_msgs/msg/Int8
std_msgs/msg/Byte
std_msgs/msg/Bool
std_msgs/msg/Int32
std_msgs/msg/Int16
std_msgs/msg/Float64
std_msgs/msg/Header
std_msgs/msg/Char
std_msgs/msg/Int64
std_msgs/msg/MultiArrayLayout
std_msgs/msg/Int16MultiArray
std_msgs/msg/Float32
std_msgs/msg/UInt64MultiArray
std_msgs/msg/UInt8MultiArray
std_msgs/msg/Int8MultiArray
std_msgs/msg/Int32MultiArray
std_msgs/msg/UInt32
std_msgs/msg/ColorRGBA
std_msgs/msg/Empty

以下是一些 std_msgs 中的常见消息类型:

Header: 包含 ROS 消息的标准头部信息,如时间戳和坐标系。

uint32 seq
time stamp
string frame_id

String: 代表字符串。

string data

Bool: 代表布尔值。

bool data

Int8, Int16, Int32, Int64: 代表有符号整数,分别为 8 位、16 位、32 位和 64 位。

int8 data
int16 data
int32 data
int64 data

UInt8, UInt16, UInt32, UInt64: 代表无符号整数,分别为 8 位、16 位、32 位和 64 位。

uint8 data
uint16 data
uint32 data
uint64 data

Float32, Float64: 代表单精度和双精度浮点数。

float32 data
float64 data

这些消息类型可以广泛应用于 ROS 中的不同节点,用于传递基本的数据信息。例如,一个节点可以发布一个包含测量值的 Float32 消息,而另一个节点可以订阅这个消息以获取测量值。

1.2 ROS2传感器消息包

ros2 interface package sensor_msgs
sensor_msgs/msg/PointCloud
sensor_msgs/msg/CompressedImage
sensor_msgs/msg/Image
sensor_msgs/msg/PointField
sensor_msgs/msg/LaserEcho
sensor_msgs/msg/BatteryState
sensor_msgs/msg/MultiDOFJointState
sensor_msgs/msg/NavSatFix
sensor_msgs/msg/Joy
sensor_msgs/msg/MultiEchoLaserScan
sensor_msgs/msg/LaserScan
sensor_msgs/msg/JoyFeedbackArray
sensor_msgs/msg/MagneticField
sensor_msgs/msg/ChannelFloat32
sensor_msgs/msg/RegionOfInterest
sensor_msgs/msg/NavSatStatus
sensor_msgs/msg/Range
sensor_msgs/msg/Illuminance
sensor_msgs/msg/RelativeHumidity
sensor_msgs/msg/Temperature
sensor_msgs/msg/FluidPressure
sensor_msgs/msg/JointState
sensor_msgs/srv/SetCameraInfo
sensor_msgs/msg/Imu
sensor_msgs/msg/CameraInfo
sensor_msgs/msg/JoyFeedback
sensor_msgs/msg/TimeReference
sensor_msgs/msg/PointCloud2

以下是 sensor_msgs 中的一些常见消息类型:

Image: 用于传递图像数据,包括图像的像素数据、编码格式、时间戳等。

Header header
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

CameraInfo: 包含相机的信息,如相机矩阵、畸变参数等。

Header header
uint32 height
uint32 width
string distortion_model
float64[] D
float64[] K
float64[] R
float64[] P
uint32[] binning_x
uint32[] binning_y
sensor_msgs/RegionOfInterest roi

PointCloud2: 用于传递点云数据,包括点的坐标、颜色等信息。

Header header
bool is_dense
string[] fields
uint8 INT8 = 1
uint8 UINT8 = 2
uint8 INT16 = 3
uint8 UINT16 = 4
uint8 INT32 = 5
uint8 UINT32 = 6
uint8 FLOAT32 = 7
uint8 FLOAT64 = 8
uint8 point_step
uint8[] data
uint32 row_step
uint32 width
uint32 height
sensor_msgs/PointField[] fields
bool is_bigendian
uint32 point_step
uint32 row_step
uint32 data_length
uint8[] data

LaserScan: 用于传递激光扫描数据。

Header header
float32 angle_min
float32 angle_max
float32 angle_increment
float32 time_increment
float32 scan_time
float32 range_min
float32 range_max
float32[] ranges
float32[] intensities

IMU:惯性测量单元的方向、角速度和线性加速度

Header header
geometry_msgs/Quaternion orientation
float64[9] orientation_covariance
geometry_msgs/Vector3 angular_velocity
float64[9] angular_velocity_covariance
geometry_msgs/Vector3 linear_acceleration
float64[9] linear_acceleration_covariance

header: 用于包含时间戳等信息的标准 ROS 消息头。
orientation: 包含四元数表示的方向。
orientation_covariance: 一个长度为 9 的数组,表示方向协方差矩阵。
angular_velocity: 包含角速度信息的三维向量。
angular_velocity_covariance: 一个长度为 9 的数组,表示角速度协方差矩阵。
linear_acceleration: 包含线性加速度信息的三维向量。
linear_acceleration_covariance: 一个长度为 9 的数组,表示线性加速度协方差矩阵。

这些消息类型可以用于在 ROS 系统中传递从各种传感器获得的数据。节点可以发布这些消息,而其他节点则可以订阅它们以获取传感器数据。

1.3 ROS2几何相关消息包

ros2 interface package geometry_msgs
geometry_msgs/msg/Quaternion
geometry_msgs/msg/WrenchStamped
geometry_msgs/msg/Point32
geometry_msgs/msg/Accel
geometry_msgs/msg/Pose
geometry_msgs/msg/Vector3
geometry_msgs/msg/PoseArray
geometry_msgs/msg/PoseWithCovarianceStamped
geometry_msgs/msg/Polygon
geometry_msgs/msg/AccelWithCovarianceStamped
geometry_msgs/msg/AccelStamped
geometry_msgs/msg/PoseWithCovariance
geometry_msgs/msg/TransformStamped
geometry_msgs/msg/PointStamped
geometry_msgs/msg/PolygonStamped
geometry_msgs/msg/Vector3Stamped
geometry_msgs/msg/Inertia
geometry_msgs/msg/Wrench
geometry_msgs/msg/AccelWithCovariance
geometry_msgs/msg/Pose2D
geometry_msgs/msg/InertiaStamped
geometry_msgs/msg/PoseStamped
geometry_msgs/msg/QuaternionStamped
geometry_msgs/msg/Transform
geometry_msgs/msg/Twist
geometry_msgs/msg/TwistStamped
geometry_msgs/msg/TwistWithCovarianceStamped
geometry_msgs/msg/TwistWithCovariance
geometry_msgs/msg/Point

以下是一些常见的 geometry_msgs 中的消息类型:

Point: 代表三维空间中的点。

float64 x
float64 y
float64 z

Quaternion: 代表四元数,通常用于表示旋转。

float64 x
float64 y
float64 z
float64 w

Pose: 代表包含位置和方向的位姿。

Point position
Quaternion orientation

Transform: 代表变换矩阵。

Vector3 translation
Quaternion rotation

这些消息类型可以用于 ROS 中的各种应用,例如机器人运动、感知、导航等。通过使用这些消息,ROS 中的不同节点可以相互通信,共享几何信息,从而实现协同工作。

2 ROS2接口介绍

2.1 常用CLI命令

查看接口列表

ros2 interface list

查看某一个接口详细的内容

ros2 interface show std_msgs/msg/String

2.2 原始数据类型与包装类型

基本数据类型,每一个都可以在后面加上[]将其变成数组形式(从一个变成多个)

bool
byte
char
float32, float64
int8, uint8
int16, uint16
int32, uint32
int64, uint64
string

对数据类型进行剥洋葱

ros2 interface show sensor_msgs/msg/Image

终端显示如下:

# This message contains an uncompressed image
# (0, 0) is at top-left corner of image

std_msgs/Header header # Header timestamp should be acquisition time of image
uint32 height                # image height, that is, number of rows
uint32 width                 # image width, that is, number of columns
string encoding       # Encoding of pixels -- channel meaning, ordering, size                     
uint8 is_bigendian    # is this data bigendian?
uint32 step           # Full row length in bytes
uint8[] data          # actual matrix data, size is (step * rows)

对非基类的数据数据类型std_msgs/Header header进行剥洋葱

ros2 interface show std_msgs/msg/Header

终端显示如下:

# Two-integer timestamp that is expressed as seconds and nanoseconds.
builtin_interfaces/Time stamp
# Transform frame with which this data is associated.
string frame_id

对非基类的数据数据类型builtin_interfaces/Time进行剥洋葱

ros2 interface show builtin_interfaces/msg/Time

终端显示如下:

int32 sec
uint32 nanosec

最后只剩下基类了

3 自定义接口示例

说明:这部分笔者主要是将鱼香ROS2的示例成功跑通,具体流程如下:
示例链接:

【ROS2机器人入门到实战】ROS2接口介绍
【ROS2机器人入门到实战】自定义接口RCLPY实战

3.1 接口定义

1.创建接口功能包

ros2 pkg create alian_ros2_interfaces --build-type ament_cmake --dependencies rosidl_default_generators geometry_msgs

注意功能包类型必须为:ament_cmake

依赖rosidl_default_generators:用于生成ROS中的消息、服务和行为的代码。ROS中的消息和服务是通过IDL(接口定义语言)描述的,而rosidl_default_generators
则负责将这些IDL文件转换为各种编程语言的实际代码。

具体来说,rosidl_default_generators 支持将ROS接口定义语言(ROS
IDL)文件转换为C、C++等语言的源代码。这包括生成用于发布/订阅消息、提供/调用服务以及执行行为所需的代码。

2.编写接口脚本文件
接着创建文件夹(msg、srv)和文件(RobotPose.msg、RobotStatus.msg、MoveRobot.srv),如下图。

.
├── CMakeLists.txt
├── msg
│   ├── RobotPose.msg
│   └── RobotStatus.msg
├── package.xml
└── srv
    └── MoveRobot.srv
2 directories, 5 files

RobotPose.msg

uint32 STATUS_MOVEING = 1
uint32 STATUS_STOP = 2
uint32  status
geometry_msgs/Pose pose

RobotStatus.msg

uint32 STATUS_MOVEING = 1
uint32 STATUS_STOP = 1
uint32  status
float32 pose

MoveRobot.srv

# 前进后退的距离
float32 distance
---
# 当前的位置
float32 pose

3.设置配置文件
CMakeLists.txt

find_package(rosidl_default_generators REQUIRED)
find_package(geometry_msgs REQUIRED)
# 添加下面的内容
rosidl_generate_interfaces(${PROJECT_NAME}
  "msg/RobotPose.msg"
  "msg/RobotStatus.msg"
  "srv/MoveRobot.srv"
  DEPENDENCIES geometry_msgs
)

package.xml

<buildtool_depend>ament_cmake</buildtool_depend>

  <depend>rosidl_default_generators</depend>
  <depend>geometry_msgs</depend>
  
  <member_of_group>rosidl_interface_packages</member_of_group> #添加这一行

  <test_depend>ament_lint_auto</test_depend>
  <test_depend>ament_lint_common</test_depend>

4.编译接口功能包

colcon build --packages-select example_ros2_interfaces

3.2 自定义接口RCLPY

1.创建功能包和节点

cd colcon_ws/  # 自定义的工作空间
ros2 pkg create example_interfaces_rclpy --build-type ament_python --dependencies rclpy example_ros2_interfaces --destination-directory src --node-name example_interfaces_robot_02
touch src/example_interfaces_rclpy/example_interfaces_rclpy/example_interfaces_control_02.py

2. 编写节点脚本
example_interfaces_robot_02.py

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from example_ros2_interfaces.msg import RobotStatus
import math
from time import sleep
from example_ros2_interfaces.srv import MoveRobot

class Robot():
    def __init__(self) -> None:
        self.current_pose_ = 0.0
        self.target_pose_ = 0.0
        self.status_ = RobotStatus.STATUS_STOP

    def get_status(self):
        return self.status_

    def get_current_pose(self):
        return self.current_pose_

    def move_distance(self,distance):
        self.status_ = RobotStatus.STATUS_MOVEING # 更新状态为移动、
        self.target_pose_ += distance # 更新目标位置

        while math.fabs(self.target_pose_ - self.current_pose_) > 0.01:
            step = distance / math.fabs(distance) * math.fabs(self.target_pose_ - self.current_pose_) * 0.1 # 计算一步移动距离
            self.current_pose_  += step # 移动一步
            print(f"移动了:{step}当前位置:{self.current_pose_}")
            sleep(0.5) #休息0.5s
        self.status_ = RobotStatus.STATUS_STOP # 更新状态为停止
        return self.current_pose_      

class ExampleInterfacesRobot02(Node):
    def __init__(self,name):
        super().__init__(name)
        self.get_logger().info("节点已启动:%s!" % name)
        self.robot = Robot()
        self.move_robot_server_ = self.create_service(MoveRobot,"move_robot", self.handle_move_robot) 
        self.robot_status_publisher_ = self.create_publisher(RobotStatus,"robot_status", 10) 
        self.publisher_timer_ = self.create_timer(0.5, self.publisher_timer_callback)
    
    def publisher_timer_callback(self):
        """
        定时器回调发布数据函数
        """
        msg = RobotStatus() #构造消息
        msg.status = self.robot.get_status()
        msg.pose = self.robot.get_current_pose()
        self.robot_status_publisher_.publish(msg) # 发布消息
        self.get_logger().info(f'发布了当前的状态:{msg.status} 位置:{msg.pose}')

    def handle_move_robot(self,request, response):
        self.robot.move_distance(request.distance)
        response.pose = self.robot.get_current_pose()
        return response

        
def main(args=None):
    rclpy.init(args=args) # 初始化rclpy
    node = ExampleInterfacesRobot02("example_interfaces_robot_02")  # 新建一个节点
    rclpy.spin(node) # 保持节点运行,检测是否收到退出指令(Ctrl+C)
    rclpy.shutdown() # 关闭rclpy

example_interfaces_control_02.py

#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from example_ros2_interfaces.msg import RobotStatus
from example_ros2_interfaces.srv import MoveRobot

class ExampleInterfacesControl02(Node):
    def __init__(self,name):
        super().__init__(name)
        self.get_logger().info("节点已启动:%s!" % name)
        self.client_ = self.create_client(MoveRobot,"move_robot") 
        self.robot_status_subscribe_ = self.create_subscription(RobotStatus,"robot_status",self.robot_status_callback,10)

    def robot_status_callback(self,msg):
        self.get_logger().info(f"收到状态数据位置:{msg.pose} 状态:{msg.status}")

    def move_result_callback_(self, result_future):
        response = result_future.result()
        self.get_logger().info(f"收到返回结果:{response.pose}")

    def move_robot(self, distance):
        while rclpy.ok() and self.client_.wait_for_service(1)==False:
            self.get_logger().info(f"等待服务端上线....")
        request = MoveRobot.Request()
        request.distance = distance
        self.get_logger().info(f"请求服务让机器人移动{distance}")
        self.client_.call_async(request).add_done_callback(self.move_result_callback_)


def main(args=None):
    rclpy.init(args=args) # 初始化rclpy
    node = ExampleInterfacesControl02("example_interfaces_control_02")  # 新建一个节点
    node.move_robot(5.0) #移动5米
    rclpy.spin(node) # 保持节点运行,检测是否收到退出指令(Ctrl+C)
    rclpy.shutdown() # 关闭rclpy

3.修改配置文件setup.py

entry_points={
        'console_scripts': [
            'example_interfaces_control_02 = example_interfaces_rclpy.example_interfaces_control_02:main',
            'example_interfaces_robot_02 = example_interfaces_rclpy.example_interfaces_robot_02:main'
        ],
    },

4.编译功能包+运行测试

# 新终端
colcon build --packages-up-to example_interfaces_rclpy
source install/setup.bash
ros2 run example_interfaces_rclpy example_interfaces_robot_02
# 新终端
source install/setup.bash
ros2 run example_interfaces_rclpy example_interfaces_control_02

在这里插入图片描述
上图则说明自定义接口测试成功!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1352463.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微同城生活源码系统:专业搭建本地生活服务平台 附带完整的安装部署教程

随着移动互联网的普及&#xff0c;人们越来越依赖手机进行日常生活中的各种活动&#xff0c;包括购物、餐饮、娱乐等。而传统的本地生活服务平台往往存在着功能单一、用户体验差等问题&#xff0c;无法满足用户日益增长的需求。因此&#xff0c;开发一款功能强大、易用性强的本…

CDGA,CDGP,CDMP有啥区别?考哪个好?

&#x1f3af;CDMP数据管理专业认证是由DAMA国际于2004推出&#xff0c;是一项涵盖学历教育、工作经验和专业知识考试在内的综合资格认证&#xff0c;也是目前全球为一数据管理方面权威性认证。 ✅CDGA&#xff1a;数据治理工程师&#xff0c;“DAMA中国”组织的数据治理方面的…

利用Ubuntu 20.04(WSL2)+ DevEco Device Tools搭建鸿蒙设备开发环境

小白一个&#xff0c;因为项目原因需要用到小熊派BearPi Nano做开发&#xff0c;决定使用WSL2上的Ubuntu 20.04进行开发环境的搭建&#xff0c;记录一下搭建的流程&#xff0c;过程难免有疏漏&#xff0c;望谅解。 过程中参考了随遇而安的dandelion 大佬的这一篇文章&#xff1…

【MPC学习笔记】01:MPC简介(Lecture 1_1 Unconstrained MPC)

本笔记来自北航诸兵老师的课程 课程地址&#xff1a;模型预测控制&#xff08;2022春&#xff09;lecture 1-1 Unconstrained MPC 文章目录 0 MPC 简介0.1 案例引入0.2 系统模型0.3 MPC的优点0.4 MPC的缺点0.5 MPC的未来 1 详细介绍 0 MPC 简介 0.1 案例引入 MPC&#xff08;…

MySQL--安装与配置与向日葵的基本操作使用

一.MySQL介绍 1.1 MySQL简介 MySQL是一个开源的关系型数据库管理系统&#xff0c;最早由瑞典MySQL AB公司开发。这个数据库系统有着高可靠性、高性能和易用性的特点&#xff0c;在互联网上得到了广泛的应用。MySQL支持SQL语言&#xff0c;可以运行在多种操作系统上&#xff0c…

数据结构【图篇】

数据结构【图篇】 文章目录 数据结构【图篇】前言为什么突然想学算法了&#xff1f;为什么选择码蹄集作为刷题软件&#xff1f; 目录一、图(一)、图的存储(二)、图的基本操作(三)、最短路径问题 二、拓扑排序三、结语 前言 为什么突然想学算法了&#xff1f; > 用较为“官方…

Java中100==100为true,而1000==1000为false?

前言 今天跟大家聊一个有趣的话题&#xff0c;在Java中两个Integer对象做比较时&#xff0c;会产生意想不到的结果。 例如&#xff1a; Integer a 100; Integer b 100; System.out.println(ab);其运行结果是&#xff1a;true。 而如果改成下面这样&#xff1a; Integer …

八大算法排序@堆排序(C语言版本)

目录 堆排序大堆排序概念算法思想建堆建堆核心算法建堆的代码 排序代码实现 小堆排序代码实现时间复杂度空间复杂度 堆排序 堆排序借用的是堆的特性来实现排序功能的。大堆需要满足父节点大于子节点&#xff0c;因此堆顶是整个数组中的最大元素。小堆则相反&#xff0c;要求父节…

在Android设备上设置和使用隧道代理HTTP

随着互联网的深入发展&#xff0c;网络信息的传递已经成为人们日常生活中不可或缺的一部分。对于我们中国人来说&#xff0c;由于某些特殊的原因&#xff0c;访问国外网站时常常会遇到限制。为了解决这个问题&#xff0c;使用代理服务器成为了许多人的选择。而在Android设备上设…

WPD小波包理解

WPD是分析信号特性和提供具有时频局部化函数的正交小波基的有效工具&#xff0c;同时也是一种小波分解&#xff0c;它可以将原始信号分解成若干子层。小波分解实现了单侧分解&#xff0c;但它只分离频率的低通分量。相比之下&#xff0c;WPD提供了更精确的信号分析&#xff0c;…

40道java集合面试题含答案(很全)

1. 什么是集合 集合就是一个放数据的容器&#xff0c;准确的说是放数据对象引用的容器集合类存放的都是对象的引用&#xff0c;而不是对象的本身集合类型主要有3种&#xff1a;set(集&#xff09;、list(列表&#xff09;和map(映射)。 2. 集合的特点 集合的特点主要有如下两…

成为比开发硬气的测试人,我都经历了什么?

我的职业生涯很简单&#xff0c;可以说&#xff0c;我的测试生涯就是我的职业生涯。 大学的专业是计算机&#xff0c;当年是热门的学科&#xff0c;但自己的计算机知识不强悍&#xff0c;又加上学校的硬核是金融业&#xff0c;来学校校招的都是各大银行&#xff0c;且都是需要…

shopee利润怎么算?看妙手ERP如何帮您精准掌握店铺利润明细!

最近&#xff0c;妙手收到不少卖家朋友反应&#xff1a;“每个月对账的时候&#xff0c;常常遇到店铺利润明细不准确的情况。明明利润上显示是赚钱的&#xff0c;但是实际计算后发现店铺是亏损的&#xff0c;却找不到具体原因。”其实&#xff0c;究其根本就是&#xff1a;店铺…

2024货运市场继续回暖,满帮有望抓牢成长主旋律

2023年&#xff0c;物流货运行业将对它“刻骨铭心”。首次告别过去三年的特殊波动&#xff0c;物流货运的每一条细分赛道&#xff0c;都在努力跑出新速度&#xff0c;力图加速行业的修复&#xff0c;并走向高质量发展。中国物流与采购联合会在12月底指出&#xff0c;2023年物流…

ASP.NET Core基础之图片文件(一)-WebApi访问静态图片

阅读本文你的收获&#xff1a; 学会在WebApi项目中访问静态图片了解静态文件中间件UseStaticFiles的用法 系统中免不了要去处理图片文件&#xff0c;比如上传商品的图片、显示商品的图片&#xff0c;访问系统中的图片等等&#xff0c;根据微软官网描述&#xff1a; 静态文件&a…

运维人员的逆袭:IT界的“万金油”如何迈向人工智能时代

一、运维人员的角色变迁 1、从“修理工”到“系统守护者” 在传统的IT环境中&#xff0c;运维人员的主要任务是维护服务器、网络设备和数据库等基础设施。他们需要对硬件设备进行定期检查和维修&#xff0c;以确保系统的稳定运行。随着云计算和虚拟化技术的普及&#xff0c;运…

认真学SQL——MySQL入门之DQL多表查询

多表查询 本质: 把多个表通过主外键关联关系连接(join)合并成一个大表,再去查询 知识点&#xff1a; 外键 foreign key 外键概念: 在从表(多方)创建一个字段&#xff0c;引用主表(一方)的主键,对应的这个字段就是外键。 外键特点&#xff1a; 1:从表外键的值是对主表主键…

mysql 单表 操作 最大条数验证 以及优化

1、背景 开车的多年老司机&#xff0c;是不是经常听到过&#xff0c;“mysql 单表最好不要超过 2000w”,“单表超过 2000w 就要考虑数据迁移了”&#xff0c;“你这个表数据都马上要到 2000w 了&#xff0c;难怪查询速度慢”。 2、实验 实验一把看看… 建一张表 CREATE TABL…

【论文+在线运行】AnyText:能准确写汉字的AI绘图工具

源码&#xff1a;https://github.com/tyxsspa/AnyText 阿里在线运行: https://modelscope.cn/studios/damo/studio_anytext/summary 论文&#xff1a;2311.AnyText: Multilingual Visual Text Generation And Editing 一、AnyTexT是什么&#xff1f; 是一个基于扩散模型的&am…

四、HTML 属性

属性是 HTML 元素提供的附加信息。 一、HTML 属性 HTML 元素可以设置属性属性可以在元素中添加附加信息属性一般描述于开始标签属性总是以名称/值对的形式出现&#xff0c;比如&#xff1a;name"value"。 二、 属性实例 HTML 链接由 <a> 标签定义。链接的地…